








MODEL 360 FLOATING POINT CONTROL UNIT

GENERAL

Floating point operation is a method of performing arithmetic

computation with numbers which vary in magnitude over a rela-

tively wide range. The magnitude of the number is recorded as

an exponent of the base 10 which is carried with the significant R
digits of the number itself during calculation. Thus, results '
are automatically scaled and kept within the range of the computer.

The Model 360 Floating Point Control Unit provides the DATATRON
with a separate set of commands for the floating point operations
of addition, subtraction, multiplication, and division. The
cabinet is the same height and depth as the central computer and
is 32 inches wide. It is designed to be attached to the left end
of the DATATRON, as seen from the front. The DATATRON motor-
generator, power control, and line regulator have enough surplus
capacity to handle the Model 360 which requires 1.5 kva., Opera-
tion of the unit is controlled by computer commands.

..

ADVANTAGES OF FLOATING POINT OPERATION

Significant programming, coding, and economic advantages are
available to many applications by the use of the Floating Point
Control for the following reasons:

(1) The area of drum storage required for programs will be less
since coding for scaling is not necessary.

(2) The time to code a program will be reduced because the most
difficult portions of a program to code are those requiring
scaling.

(3) The computer time to debug a program will be reduced because
of the shorter program and because of the frequency of coding
errors in manual scaling.

(4) The analytical skill needed for scaling a calculation will
be largely eliminated.

(5) The machine running time will be reduced, since the portions
of a program that require scaling are time consuming.

CHARACTERISTICS OF A FLOATING POINT NUMBER

The structure of a number to be used by the Floating Point
Control Unit is as follows:

1



The mantissa, or numerical value, is stored in the last eight
digit positions of the computer word. Non-zero numbers range
from ,10000000 to .99999999,

The exponent of the base, which indicates the magnitude of the
number, is stored in the first two digit positions of the com-
puter word. It may range from 00 to 99 which is interpreted
as -50 and 49.

The sign of the mantissa occupies the sign position of the word.

The exponent index of a number which falls within the range from
»10000000 to .99999999 is zero, which is written as 50, Numbers
greater or less than this range can be written in the same number
of digits by using a suitable power of 10. For example,
12.345678 X 10° can be written as .12345678 X 102. The exponent
index of any number is obtained by adding the appropriate power
of ten to 50. Figure 2 contains a table of examples of numbers
in the floating point unotation.

Any number which falls within the range 10791 to 10%° may be
represented in the floating point structure. Zero is repre-
sented as a zero exponent and mantissa. 1Its sign may be plus
or minus, following the same rules as in fixed point operation.

Fixed Point Power of Floating Point
Number Ten Structure

+,12345678 0 +5012345678

-.12345678 0 -5012345678

+,00012345678 -3 44712345678

~.123.45678 3 -5312345678

+ 1234567800000 13 +6312345678

Examples of Floating Point Structure. Figure 2

SIGNIFICANCE OF RESULTS OF FLOATING POINT OPERATIONS

The results of floating point operations may appear to have more
significance than actually exists. In a fixed point operation, the
scaling involved is known. 1In floating point operation, the scal-
ing is performed automatically and is not readily available for
inspection. Unless a scaling analysis is performed, it is almost
impossible to state how significant a given result is. Consider
the following example of multiplication following floating point
subtraction:

(2)



Exponent Mantissa

60 31704162
(-) 60 31704168
(=) -53 60000000
(x) 60 70134061
(=) -63 42080436

If the final result is the only factor available for inspection,
it will be interpreted as -420904360000, However, the subtrac-

tion produced a result which has, at most, one significant digit;
hence, the product has, at most, one significant digit. The re-

sult should be interpreted as -4000000000000, where the 4 is
rather doubtful.

COMMANDS

GENERAL

The floating point commands for addition, subtraction,

multiplication, and division all have the following features
in common:

-~ All will cause the overflow in the DATATRON to be
set if the range is exceeded. The sign will be set
positive on overflow.

-~ All will cause the A and R Registers to be cleared
if the result is less than 10'51. This is referred to
as underflow.

~ Any floating point command will destroy the contents
of the special counter.

- All floating point operations leave their mantissas
in a normalized form; that is, within the range
10000000 to .99999999.

FLOATING POINT ADD (FAD)

The execution of this command adds the floating point
number in the cell specified by the operand address to the

floating point number in the A Register. The command takes
the form:

s 000p 80 xxxx

8 is the sign position. (See B Modification in
the Central Computer Handbook.)

3)

_

Py



000 is of no significance to this command.

p is the breakpoint position.
Handbook.)

(See Central Computer

80 is the numerical operation code for Floating Point Add.

xxxx is the address of the floating point number to be
added to the floating point number in the A Register.

Location Operation Operand Remarks
Address
7001 CAD 2000 Clear A and set to float-
ing point numbex
7002 FAD 1000 Floating Point Add second
number.
7003 ST 3000 Store result.

A Register after

Floating Point

Result in

Execution of Instruc- Number in A Register
tion at 7001 Cell 1000
0 80 10000000 0 51 10000000 O 80 10000000
0 80 90000000 0 51 20000000 0 80 90000000
1 51 20000000 1 51 90000000 1 52 11000000
1 51 20000000 0 49 20000000 1 51 19800000
0 31 20000000 1 31 20000000 1 00 00000000
1 31 20000000 0 31 20000000 0 00 00000000
0 99 90000000 0 99 10000000 0 01 00000000 (overflow)
1 99 90000000 1 99 10000000 0 01 00000000 (overflow)
Examples of Floating Point Add. Figure 3

The R Register is left undisturbed during the execution of
the Floating Point Add command unless the result is less

than 10"51

» in which case the A Register and the R Register
are cleared to zeros.

A Floating Point Clear and Add or Clear and Add Absolute
value can be executed with the existing fixed point commands.

4)



FLOATING POINT SUBTRACT (FSU)

The execution of this command subtracts the floating point

number in the cell specified by the operand address from

the floating point number in the A Register. The command .

takes the form: ' @
s 000p 81 xxxx

S

8 18 the sign position. (See B Modification in the :
Central Computer Handbook.)

000 is of no significance to this command.

P is the breakpoint position. (See Central Computer
Handbook.)

81 is the numwerical operation code for Floating Point
Subtract,

xxxx is the address of the floating point number to be
subtracted from the floating point number in the

|
|
A Register. |
|
|
Location Operation Operand Remarks
Address
7001 CAD 2000 Clear the A Register and
set to a floating point
number.
7002 FSU 1000 Floating Point Subtract
the number in cell 1000.
7003 ST 3000 Store the result in cell
3000.
A Register after Floating Point R
Execution of Instruc- Number in
tion at cell 7001 Cell 1000 Result Stored
1 60 20000000 1 60 10000000 1 60 10000000
1 60 20000000 0 60 10000000 1 60 30000000
1 60 20000000 1 60 90000000 0 60 70000000
1 01 20000000 1 01 90000000 0 01 70000000
0 49 30000000 0 52 40000000 1 52 39970000
1 30 20000000 1 20 10000000 1l 30 20000000
1 30 20000000 1 30 20000000 0 00 00000000
1 99 90000000 0 99 40000000 0 01 30000000 (overflow)
0 51 12345678 0 50 20000000 0 51 10345678

Examples of Floating Point Subtract. Figure 4

(5)



The R Register is left undisturbed during the execution
of the Floating Point Subtract command unless the result
is less than 10721, in which case the A Register and the
R Register are cleared to zeros.

{ A Floating Point, Clear and Subtract, or Clear and Subtract
Absolute value can be executed with the existing fixed
point commands.

FLOATING POINT MULTIPLY (FM)

The execution of this command uses the floating point number
in the A Register as the multiplier and the floating point
number in the cell specified by the operand address as the
multiplicand, The eighteen digit floating point product

is inserted in the A and R Registers, the most significant
digits being in the A Register. The command takes the form:

s 000p 82 xxxx

jn

is the sign position. (See B Modification in the
Central Computer Handbook.)

000 is of no significance to this command.

p is the breakpoint position. (See Central Computer
Handbook.)

82 is the numerical operation code for Floating Point
Multiply.

xxxx is the address of the floating point multiplicand.

The R Register is automatically cleared before the operation.

(6)



Location Operation Operand Remarks

Address
7001 CAD 2000 Clear A and set to float- y
ing point multiplier. ’%sg
7002 FM 1000 Multiply using floating o
point number at cell 1000
as multiplicand.
7003 ST 3000 Store result.
A Register after Floating Point Operation result in
Execution of Instruc- Multiplicand A and R Registers
tion at 7001
0 55 20000000 0 55 20000000 0 59 40000000 0000000000
0 55 20000000 1 55 20000000 1 59 40000000 0000000000
0 40 20000000 0 60 20000000 0 49 40000000 0000000000
1 40 20000000 1 60 20000000 0 49 40000000 0000000000
0 80 20000000 0 80 20000000 0 00 20000000 0000000000 (overflow)
0 51 20000000 0 51 12345678 0 51 24691356 0000000000
0 51 22222222 0 51 11111111 0 51 24691357 5308642000

Examples of Floating Point Multiply. Figure 5

With certain combinations, a Floating Point Multiply may set
the overflow in the DATATRON despite the fact that the answer
would be within the range of the computer. The spurious over-~
flow is due to the fact that the machine approximates the
answer exponent by first performing the indicated operation,
next going on with the mantissa, and then modifying the answer
exponent. For example, an overflow will be indicated if the
sum of the exponents in their coded form is equal to or
greater than 150; therefore, a spurious overflow will be in-
dicated when the mantissa product is less than ,10000000 and
the exponent sum is 150. This is shown in the following
examples:

Machine
Representation True Result Machine Result

(8020000000) (7040500000) 1049 x .81 Overflow

(7990000000) (7090000000) 10492 x .81 9981000000

7)



FLOATING POINT DIVIDE (FDIV)

The execution of this command divides the eighteen digit
floating point number in the A and R Registers by the
floating point number in the cell specified by the operand
address. The command takes the form:

s 000p 83 xxxx

s is the sign position. (See B Modification in the
Central Computer Handbook.)

000 has no significance for this command.

p is the breakpoint position. (See Central Computer
Handbook.)

83 is the operation code for Floating Point Divide.
xxxx is the address of the floating point divisor.

After execution of the command, the quotient will be in the
A Register. The R Register will contain the remainder and

the last one or two digits of the quotient. The content

of the R Register is determined according to the following

rules:

(1) If the absolute value of the mantissa in the dividend
is less than the absolute of the mantissa in the divisor,
then the digit in the most significant position of the

R Register is the least significant digit (ninth) of the
quotient. It is followed by two zeros and the seven most
significant digits of the remainder. The eighth and last
digit of the remainder is lost.

(2) If the absolute value of the mantissa in the dividend
is equal to or greater than the absolute value of the man-
tissa in the divisor, then the digits in the two most sig-
nificant digits of the R Register are the two least signi-
ficant digits of the quotient (ninth and tenth). They are
followed by two zeros and the six most significant digits
of the remainder. The last two digits of the remainder
are lost.

8)



Location Operation Operand Remarks

Address
7000 CR 0000 Clear the R Register.
7001 CAD 2000 Clear the A Register and set
to the floating point number. 5
7002 FDIV 1000 Divide by the floating
point divisor,.
7003 ST 3000 Store quotient.

A and R Registers after Floating Point A and R Registers after

Execution of the Command Divisor at Execution of the Command

at 7001 Cell 1000 at 7002

0 54 80000000 0000000000 0 52 20000000 0 53 40000000 0000000000

1 08 40000000 0000000000 0 04 20000000 1 55 20000000 0000000000

0 10 40000000 0000000000 0 50 20000000 0 11 20000000 0000000000

0 50 40000000 0000000000 1 50 30000000 1 51 13333333 3300100000

0 50 30000000 0000000000 0 50 40000000 0 50 75000000 0000000000

0 50 10000000 0000000000 0 50 30000000 0 50 33333333 3001000000

0 80 50000000 0000000000 0 20 50000000 0 00 50000000 0000000000 (overflow)

Examples of Floating Point Divide. Figure 6

With certain combinations, a Floating Point Divide may clear
the A Register and the R Register despite the fact that the
answer would be within the number range of the machine. The
spurious underflow is due to the fact that the machine
approximates the answer exponent by first performing the
indicated operation on the exponent and then the mantissa
and finally modifying the answer exponent. The A and R
Register will be cleared if the exponents differ by 51,

with the expomnent in the divisor being greater and with the
quotient mantissa equal to or greater than ,10000000. This
is shown in the following example.

Dividend Divisor Machine Result True Result

0 09 20000000 0 60 10000000 0 00 00000000 10780 x .2

0 09 16000000 0 59 80000000 0 00 20000000 10790 x .2

The Floating Point Divide will produce no spurious overflow.

(9)



. S

W

The R Register should be cleared before a Floating Point
Divide unless an 18 digit dividend is to be used. The
examples in Figure 7 illustrate the use of a cleared

R Register and also of an 18 digit dividend.

Contents of A and R
Registers before
Floating Point Divide

Floating Point

Divisor

Contents of A and R
Registers after
Execution of FDIV

0 50 33333333 3333333333 0 50 60000000 0 50 55555555 5003333333
0 50 33333333 0000000000 0 50 60000000 0 50 555556555 0000000000
0 52 20000000 8000000000 1 52 40000000 1 50 50000002 0000000000
0 52 20000000 0000000000 1 52 40000000 1 50 50000000 0000000000
1 52 88888888 8888888888 0 56 40000000 1 47 22222222 2200088888
0 52 88888888 0000000000 0 56 40000000 0 47 22222222 0000000000
Examples of Floating Point Divide. Figure 7
TIMING

In general, the time required to perform an arithmetic
floating point operation will be equal to or less than its
fixed point counterpart. For instance, the Floating Point
Multiply and Floating Point Divide are faster than their
fixed point counterparts for two reasons. First, since

the operands are only eight decimal digits, the average
number of partial additions during multiply and partial
subtractions during divide is reduced an average of nine
"add-times' or 1.5 milliseconds. Second, a further reduc-
tion is made if either floating point operand is zero during
multiply, or if the dividend is zero during divide. In
these cases, the operation is completed within seven micro-
seconds after the order is started. This speed-up becomes
significant in a large class of problems where a number of
factors are zero.

The time needed to perform floating point add or subtract is
increased by one word-time (85 microseconds) as compared with
fixed point. The average time required to execute floating
point commands, including access time for both command and
operand, is given in Figure 8. Use of the high speed loops
of the DATATRON is assumed.

Floating Point Average Execution

Operation Time in Milliseconds
Add or Subtract 2.5
Multiply 10.1
Divide 13.5

Average time for Floating Point Operations. Figure 8

Qo)



PROGRAMMING TECHNIQUES

EXAMPLE OF FLOATING POINT USE
Solve for x in the formula é

x=ab+d - r
c

Machine Coded Storage
where Floating Point Number Location
a= 222.2222200 0 53 22222222 6000
b = 8 .8800000 0 51 88800000 6001
c = .0000700 0 46 70000000 6002
d= 314.36210 0 53 31436210 6003
T = -4123,00000 1 54 41230000 6004

The R Register is cleared to zeros.

A and R Registers after

Instruction Operation Operand Execution of the

Location Address Instruction
7000 CAD 6000 0 53 22222222 0000000000
7001 FM 6001 0 54 19733333 1360000000
7002 FDIV 6002 0 58 28190475 9000600000
7003 FAD 6003 0 58 28190789 9000600000
7004 FSU 6004 0 58 28194912 9000600000
7005 ST 6005 0 58 28194912 9000600000
7006 STOP 0000 0 58 28194912 9000600000

ROUNDOFF AFTER FLOATING POINT MULTIPLY OR DIVIDE

A roundoff operation after a Floating Point Multiply or
Divide is usually irrelevant. The amount of significance
gained by a roundoff is negligible when compared with the
amount of significance lost by a single addition or sub-
traction operation. For example, the maximum amount of
significance lost by not rounding during one thousand
successive multiplication operations is three digits,
whereas one subtraction or addition can cause a loss of
all significance in one operation.

If a roundoff is desirable, however, it can be accomplished
in the following way.

11)



L a4

R

Assuming that the A and R Registers contain the product or
quotient, the following commands accomplish the roundoff.

RO 0000
SL 0002
CNZ ——
UA 0000

SL 0018
]

This short routine must be used rather than a single RO
command because errors can arise in cases like the following.

Assume that the product in the A and R Registers is
+ 52 99999999 7500000000

After an RO command, the result would appear as
+ 53 00000000 0000000000

This is incorrect. The result should be
+ 53 10000000 0000000000

The given routine allows for this possibility.

EXTRACTING INTEGRAL VALUES

In cases where only the integral value of the result is
desired, a+ 58 00000000 should be added. This will cause
the number in the A Register to be shifted right until only
its integral part remains in the A Register. This integral
value will then be normalized to produce the final result.
Figure 9 illustrates this operation.

A Register Before A Register After an FAD
Operation Using + 58 00000000 ag
Operand
+53 12345678 +53 12300000
-49 12345678 +00 00000000
-56 12345678 -56 12345600

Examples of Extraction of Integral Values. Figure 9

Qz)



TOLERANCE CHECKING IN USING FLOATING POINT OPERATION

Assume that the difference between two numbers, a and b,
is to be less than a given amount, ¢. The usual fixed

point method of checking tolerance is to subtract b from a
and test against c.

,a - bl

- C

However, this method is not feasible when numbers are in
the Floating Point structure because the exponent of Ia - bl
may differ from that of ¢ to such a degree that they are

One method which may be used with Floating
Point numbers is as follows:

not comparable.

a->ob

- C

This automatically scales the exponent down by dividing.
The coding for this operation is given below.

Location

7000
7001
7002
7003
7004
7005
7006

7018

Command

CAD 6000
FSU 6001
FDIV 6000
EX 7018
FSU 6002
0OSGD 700X
cC

0 1111 11 1111

Remarks

Bring a to A Register.
Subtract b.

Divide by a.

Remove sign,

Subtract c.

Test sign.

Branch.

CONVERSION OF FLOATING POINT NUMBERS TO FIXED POINT NOTATION

In some problems,

it is desirable to convert Floating Point

numbers to fixed point numbers before print-out or some

A routine for this conversion is given be-
low. The original Floating Point number igs assumed to be in

The integral part of the result is stored

other operation.

location 6000,

in 6001, the fractional part in 6002,

The range of Floating

Point numbers which this routine is capable of handling is
therefore 10-10< N< 1010,

a3)



Location

7000

7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019

CADA

AD
cc

AD

cc

cu

SR

STC

CAD

Su

STC

CAD

SL

CR

(SR

ST

SL

ST

0001 cu
STOP

6000
6001
6002 -
6003
6004
6005
6006

Command

6000

6003
7019
6004
7006
7018
0008
6006
6005
6006
7014
6000
0010
0000
00XX)
6001
0010
6002
XXXX
0000

Remarks

Bring Floating Point number to

A Register.

Add 3900000000. (Test oversize)
To STOP if oversize.

Add 2100000000 (Test undersize)
Change control if within range.
Exit if undersize.

Shift mantissa to R Register.
Temporarily store shift count.
Bring shift command to A Register.
Subtract shift count.

Store shift command.

Set A Register to correct sign.
Shift mantissa into A Register.
Clear R.

Stored shift command.

Store integral result.

Shift fractional result to A Register.
Store fractional result.

EXIT (with breakpoint)

STOP if oversize.

Constants

Floating Point number
0000000000 Integral result
0000000000 Fractional result
3900000000
2100000000
0000130020
0000000000

I1f the number to be converted is 1010 or greater, the routine

will stop.

command,

every case,

stopping

if desired.)

if desired.

(An exit command can be substituted for the STOP

If the number is too small, the normal
exit is used with zeros left as the converted value. In

Q4)

the exit is a CU command with a breakpoint 1 for



CONVERSION OF FIXED POINT NUMBERS TO FLOATING POINT NOTATION

In sohe problems, it is desirable to change a number in
fixed point notation to ome in floating point notation so
that calculation may be performed in the floating point
mode. A code for converting fixed point numbers to float-
ing point is given below. The fixed point number to be
converted is assumed to be in location 6000, and a scaling
constant is located in 6001. This constant gives the de-
sired position of the decimal point in the A Register. 1If ,
this figure is positive, it indicates that the decimal point
is the given number of positions to the right of its normal
Position. If this figure is negative, it indicates that the

decimal point is the given number of positions to the left
of its normal position.

For example:
Figure in 6001 Point Position in A Register
+ 0000000000 « XXXXXXXKXXX
+ 0000000003 XXX . XXXXXXX
+ 0000000007 XXXXXXX . XXX
+ 0000000010 XXXXXXXXXX .
- 0000000004 . 0000xX XX XX XXXAX
- 0000000009 .000000000XXXXXXXXXX

The floating point result igs stored in location 6002,

Location Command Remarks

7000 CAD 6000 Bring fixed point number to
A Register.

7001 NOR 7001 Normalize,

7002 SR 0010 Shift number into R Register.

7003 CAD 6001 Bring scaling constant to
A Register.

7004 AD 6003 Add 50 to scaling constant.
(Overflow if too great.)

7005 CC 7016 To STOP if too great.

7006 EX 6004 Extract exponent.

7007 SUSC 0000 Correct for normalizing.

7008 0SGD 6003 Test undersize.

7009 CC 7017

Change control if undersize.

7010 SR 0002 Shift exponent into R Register.
7011 CAD 6000 Bring fixed point number to
A Register.
7012 EX 6005 Extract sign.
7013 SL 0010 Shift Floating Point number
to A Register.
7014 ST 6002 Store Floating Point number.
7015 0001 CU XXXX EXIT (with breakpoint)
7016 STOP 0000 STOP if too great.
7017 SR 0010 Clear A Register if undersize.
7018 CU 7014 Return,

(15)



e

6000
6001
6002
6003
6004
6005

Constants

Fixed Point number
Scaling constant
Floating Point result
9999999950
0000000011 Extractor
1 0000000000 Extractor

(16)






	2015_07_12_07_07_06.pdf
	2015_07_12_07_10_04.pdf

