
6 . .

Reprinted,from The Computer Journal,

A Translation

Vol. 2, No. 2

Routine for the DEUCE Computer
by R. C. Brigham and C. G. Bell

Summary: Most computers in operation today have supplementary programs which do
automatic coding or program assembling. These programs either translate, automatically
code, or interpret pseudo instructions which in themselves may cause the enaction of
hundreds of actual machine instructions. The outstanding feature of such routines is that
programming time and effort is cut to a minimum.

This paper deals generally with translation and interpretive schemes, and specifically
with a suitable translation routine for use with the DEUCE computer. The translation
program is called SODA, or Symbolic Optirrlum Deuce Assembly Program. Two examples
of SODA use are included in an appendix.

INTRODUCTION TO THE PROBLEM

DEUCE is a two-plus-one-address computer having
twelve 32-word mercury delay lines of rapid-access
storage, and an 8,192-word magnetic drum backing
store (see Haley, 1956). It has proved to be a powerful
tool for both scientific and commercial applications, and
its usefulness is greatly increased by a large library of
subroutines and programs. The cost of the machine
places it in the medium-scale computer class, but the
speed of operation is comparable to machines in the
large-scale class. Certain aspects of programming
DEUCE, however, are clerical in nature, and can be
somewhat tedious; such programming work might well
be left Id the machine itself.

The object of the work leading to this paper has been
the development of a programming scheme which makes
the writing down of a program much simpler and more
jtraightforward than normal DEUCE programming.
This is because the SODA language is closer to that of
a mathematical language, and includes strong mnemonic
aids. Any sort of intermediate routine which eases the
programmer's work is especially of value in an academic
environment. Universities tend to have a great number
of problems which necessitate the use of a computer, but
do not have the necessary programming staff to write
the programs. A system such as SODA enables people
who are familiar with a problem, and who are not
familiar with computers, to write their own programs
with relatively little external assistance.

The basic difficulties in preparing a program for any
machine can be minimized by the use of either inter-
pretive or translation routines. Almost all computers
in use today have routines of this nature available simply
for the ease, efficiency, and convenience of the user.
Even though these "intermediate" routines generally
require more machine time, the aid they give the pro-
grammer (particularly a novice) makes them highly
desirable from an economic point of view.

INTERPRETIVE AND TRANSLATION ROUTINES

Any intermediate automatic coding program for a
computer may be broken down into either a translation
or an interpretive routine. There are routines which
combine the advantages of both translation and inter-
pretive routines to give optimum results in terms of

machine efficiency and programming effort. For
example, some routines, in order to minimize pro-
gramming time, require that a pseudo program be run
through a translator, an interpreter, and then an opti-
mizing program (in the case of computers with only a
drum or delay-line store), before giving a coded program
in machine language, suitable for the actual solution of
the problem.

An interpretive routine is a program which, when given
an order (which is called a pseudo order) in a simplified
language, calls in (i.e. transfers control to) an appropriate
subsequence, stored elsewhere in the machine, to carry
out that step in the calculation. After completion of the
subsequence, control returns to the interpretation of the
next pseudo instruction. An interpretive routine most
useful for the DEUCE machine is called the General
Interpretive Program (GIP). GIP, designed for handling
almost any matrix manipulation, also enables the pro-
grammer to operate on large blocks of data in a prescribed
sequence. Another similar but less elaborate interpretive
routine for the DEUCE is the Tabular Interpretive
Program (TIP). Still another interpretive program is
called Alphacode; this is an alpha-numeric system
which transforms the computer into a three-address
machine which has indexing facilities and works entirely
in floating-point arithmetic. These three routines were
described by Robinson (1 959).

When using a translation routine, the program is first
written down in terms of the pseudo orders of the
translator's vocabulary, which is similar to that of an
interpretive routine. These pseudo orders, however,
are then fed into the translator, which produces an out-
put program in terms of standard machine orders. It is
this program, in the standard computer language, which
effects the problem solution. The interpretation of the
pseudo orders thus occurs only once. Since interpreta-
tion usually consumes considerable machine time, a
translation scheme is of most advantage with often-used
programs. It is believed that SODA is the first transla-
tion scheme prepared for DEUCE.

INTRODUCTION TO THE NEW PSEUDO LANGUAGE-SODA

The purpose of SODA is to make the writing down of
instr~~ctions for DEUCE easier. In doing this, certain
physical features of DEUCE, which may makc pro-

Translation Routine ,for DEUCE

gamming somewhat tedious in the DEUCE language,
have to be overcome. These problems are, in general,
those that face the writer of a translation routine for a
computer which has a limited amount of non-random-
access storage, and another larger level of backing
storage.

Eight of DEUCE'S twelve mercury delay-lines are
connected to the control unit of the machine so that only
these eight can contain the program. For programs
larger than 8 x 32 instructions, more program must be
brought into delay lines from the magnetic drum at the
proper time. The drum contains 256 32-word tracks
numbered 0 to 255. SODA makes i t possible for the
programmer to assume that almost the entire drum
is a random-access store that handles both data and
program. Since either data or program is automatically
brought into delay lines only when needed, this means
that SODA defines a machine with only one level of
storage.

When programming in the DEUCE language, the
programmer usually aims at coding the program within
the delay lines in an optimum manner such that the next
instruction word is available at the same time that the
previous order is completed. Very poor coding can
result in an increase in the running time of up to several
times that of an optimally coded program. SODA writes
orders in terms of DEUCE instructions, and optimiza-
tion is automatically done in every group of delay lines
of instructions. Up to 192 DEUCE instructions,
optimally coded within every set of two delay lines, may
be in any group, but the programmer is not faced with
the size of groups, or when and where each begins, as
the transfer from one group to the next is carried out
automatically. All necessary subroutines are also placed
in the mercury store when a new group, or block, of
instructions is brought from the drum. The new informa-
tion is transferred one delay line immediately following
another, a process requiring at least 13 milliseconds per
delay line. It is possible that a repetitive loop in the
SODA program could result in the transfer of two or
more blocks of DEUCE instructions to the fast store
each cycle, thereby greatly reducing the efficiency of the
translated program. The more experienced SODA
programmer can compensate for this to a certain extent
by placing what is known as a "LOOP" control card
before repetitive portions of the SODA program.
Associated with each SODA operation are a specified
number of DEUCE instructions. The programmer can
sum the numbers associated with the SODA instructions
in the loop and include the sum as a parameter of the
control card. If possible, the translation process will
then place the loop within a single group of DEUCE
instructions. Thus, in Example I of Appendix 2,
instructions 11-14 comprise a repetitive loop which one
would desire to have as fast as possible. Therefore, a
"LOOP" control card might well be inserted between
instructions 10 and 1 I .

Each DEUCE instruction must include six numbers
which specify various addresses and clock times of the

computer. This detail, which is attributable to the
logical layout of the DEUCE hardware and insures
optimum coding, discourages people who do not have
time to learn the process. SODA alleviates the probleu
by defining a more conventional computer with less
hardware; the book-keeping details of programming are
therefore lessened.

Another factor to which a novice must become
acclimatized is that the DEUCE machine operates in
binary arithmetic. There are a host of subroutines
available for decimal input and output, but the details
of using them are a bit involved for the inexperienced
user. Although SODA operates internally either in
binary or standard floating-binary form, there are pseudo
instructions available which permit either binary,
decimal, or floating-decimal input and output.

SODA is a one-plus-one-address "machine," recog-
nizing either numeric or mnemonic orders which bear
no resemblance to the DEUCE instruction format, and
whose addresses may be written with symbolic names.
It is therefore the purpose of SODA to translate to
DEUCE language from a language more easily under-
stood by the occasional user who has not had previous
computer experience, that is, from a simple language
which is quite close to that found in writing a step-by-
step word statement of a mathematical calculation.
Existing DEUCE subroutines may be used with SODA
by employing a "SUBROUTINE" control card. This
card associates with the subroutine a mnemonic reference
in standard SODA terminology. Once the control card
has been supplied to the translator, this mnemonic
reference can be given at any point in the SODA prc
gram, just as if it were a regular SODA instruction,
whenever it is desired to employ the subroutine.

THE SODA MACHINE A N D T H E SODA L A N G U A G E

The selection of a pseudo language rests on many
requirements, the most important of which are the ease
with which the language can be used, and the efficiency
of the final machine program. Other points of considera-
tion include the ease with which the translation program
itself can be written, and the more pressing require-
ments of the computation laboratory sponsoring the
development.

The first point argues for a language close to that
which the human user employs as his own language.
Thus we might desire to write algebraic equations, or
merely give sentence statements of what is desired.
The former of these is presently receiving some attention
by Dr. C. Hamblin of the Humanities Department of
the University of New South Wales, Sydney, Australia.
He has already written an interpretive program using
such a language. A translation program for this type
of language is extremely involved, and it was felt that
something which would be available quickly would be
more desirable. In addition, it was felt that at a univer-
sity it would be advantageous to have a language which
was more like that of a conventional single-address
machine. Once such a language is mastered, the step

Translation Routine for DEUCE

T O W O R K I N G S T O R E S

I

- - - - - - -
C O N T R O L t

I
0 I

I
! C O N S T A N T S ARRAY? nC

PROGRP
U N I T 1 INPUT n A T A

, "T . - - . . - -
P R O G R A M ' T E M P O R A R Y

I " - ' -

I
I I S T O R A G E
I I I +

: O N T R O L P U L S E S

WORKING
S T O R E

F R O M W O R K I N G S T O R E S
WORKING
S T O R E
T W O

A >
v v

B U S
h A A A

v P I V
V

ADDRESS
MODIFIER

SHORT
A C C U M U L A T O R

INDEL
R E G I S T E R S

FIG. 1.-Layout of the SODA machine.

D O U B L E A C C U M U L A T O R d
/ F L O A T I N G A C C U M U L A T O R

UPPER
A C C U M U L A T O R

towards programming any machine, including DEUCE,

L O W E R
A C C U M U L A T O R

data area, which has been defined at the beginning of the
SODA program.

There is a direct connection between the part of the
memory devoted to constants and temporary storage,
and the bus. Data in the second part of the drum
memory are arranged in what are termed arrays, each
with a symbolic name, and the programmer can get at
them only by placing them in one of the two working
stores, which can be considered as random-access
memories of indefinite size. When working with data in
the working stores, it is possible to step through the
data by employing index registers. A particular element
in an array can be selected by counting back from the
last element a number of elements equal to the number in
a specified index register. Thus, the last element is
chosen if the index register contains a nought, the next
to last if it contains a one, and so forth. There is a path
between the index registers and the bus, so they can be
loaded or their contents stored away, and a special
adderlcomparison unit is included, so they can be both
modified and examined. Any element of an array can
be given a spot numeric reference without the use of
index registers. If the programmer has finished with an
array in one of the working stores, and he has placed
information in it which must be retained, then he must
return the array to the drum. A special SODA instruc-
tion is provided for this purpose.

The arithmetic unit is composed of three uccurnuluiors

is a relatively minor one. The choice for a language,
therefore, embodies the principles employed in pro-
gramming a more conventional type computer, with the
additional facility that the instruction names and the
various addresses can be alphabetical in nature, thereby
allowing for mnemonic aids. Indeed, SODA incor-
porates many of the features employed in SOAP (Sym-
bolic Optimum Assembly Program) for the IBM 650
computer and SAP (Share Assembly Program) for the
IBM 704 machine. The basic language of these same
two schemes was used as a guide throughout the
development.

SODA transforms DEUCE so that it resembles, to
the programmer, the computer illustrated in Fig. 1.
Those familiar with DEUCE logic will notice many
differences between the two machines. It is one of the
difficult aspects of writing a translation program to
think of two entirely separate machines, one being the
actual computer and one the pseudo computer defined
by the language.

The difference from the DEUCE machine is imme-
diately apparent. Here the memory is composed
exclusively of a 256-track drum divided between program,
constants, and temporary storage in the first part, and
data in the second. The dividing line between data,
program, and constants is not fixed, and the only require-
ment is that the program does not overlap any of the

Translation Routine ,for DEUCE

(d lor t , upper and lon~~r), each of which has all the
facilities of a normal accumulator except that multi-
plication and division arc limited to the upper. Further-
more, the upper and lower have the facility of combining
into a double-length accumulator which is capable of
performing addition, subtraction, and a limited number
of other double-length operations. The lower and upper
also form a floating accumulator which permits floating-
point operations.

In this pseudo computer, control extracts the instruc-
tions from the program memory, in the correct sequence,
and interprets them so that the stated requirements are
transacted.

Finally, the input and output correspond to either
binary, decimal, or floating-decimal read and punch.
When blocks of binary information are employed, there
is a sum check on data coming in to the machine, and a
check sum is computed for output punching. No other
data checks are included in the first version of SODA.
The input and output arrangements of binary arrays
will not, in general, match the existing card conventions
on DEUCE. However, if the array can be considered
as a single-row matrix, then the data will be in con-
ventional DEUCE form except for the data card pre-
ceding the matrix, and this could be incorporated by the
SODA program if desired. Indeed, the programmer
can always employ SODA to produce conventional
form at the expense of added SODA instructions.

It is difficult to discuss the SODA machine and the
SODA language separately since, as is true in any real
computer, there is a correspondence of the first order
between the two. The machine described above lends
itself most easily to a single-address type of code. It is
felt by many that a. three-address code is actually quite
a bit easier to use and for the novice programmer to
understand. The three-address code is certainly more
efficient for certain types of problems. Nevertheless, as
was mentioned above, it was desired that the resultant
program be usable as an introduction to computer pro-
gramming, and the single-address system allies itself
more closely with the vast majority of computers presently
in existence.

The SODA code is a mod~fied single-address one In
that provision for specifying the location of the next
instruction is included. This was done because it seemed
to ease some of the problems of writing the translation
program, without affecting the basic single-address
principles.

One pseudo instruction is punched per input card,
and occupies the first 25 columns of the normal 32-
column DEUCE field. The cards are punched in
standard alphanumeric form.

Five control (or directive) cards assist in the organiza-
tion of the translated program. Three of these are used
at the beginning of the SODA program. These d~rec t
the initializing before the actual program is translated.
The first type defines the names of all constants or
temporary storage spaces used in the SODA program.
A name may be up to five characters in length, at least

one of which must have a hole punched i n the Y or X
row. The second type defines any subroutines used in
the program, and is the "SUBROUTINE" control men-
tioned above. The third type reserves space for any
data that are to be stored as an array or block, and is
used by stating the number of the last track holding
elements in the array, the number of elements in the
array, and the name by which the array will be specified.
Still another type of control instruction defines the
starting point of the pseudo program, and it follows the
last card of the program being translated. The fifth
control card is the "LOOP" control described above.

The basic SODA instruction is composed of four
parts: the location of this instruction, the operation,
the location of the operand, and the location of the next
instruction. The location of this instruction is com-
posed of five punched columns representing the address
by which the instruction is to be known. These columns
may be left blank, in which case it is assumed that this
instruction is to be obeyed immediately after the pre-
ceding one. The only reason for having a symbolic
name in these columns is to provide an initial point for
the first instruction, or to provide a name to which a
jump reference can be made.

The operation is three characters in length, and is
essentially a mnemonic abbreviation to remind the
programmer of the operation. A list of the instructions
is given in Appendix 1. A version of SODA exists
which provides a list of numeric instructions. This is
useful when alpha-numeric auxiliary equipment is not
available.

The location of the operand is five characters in length
These columns may be symbolic, numeric, or blank.
The operand is the actual number corresponding to the
operand address. The synlbolic address either refers to
a constant (defined by the initializing control card giving
the names of the constants) or to an array of data which
has been placed in one of the working stores. If the
operand address is numeric, 0-31 refers to one of 32
physical positions in working store one, 32-63 refers to
working store two, 64-95 refers to constants store,
100 is the short accumulator, 101 is the lower accumu-
lator, 102 is the upper accumulator, and 103-107 refer
to special binary numbers. In addition to these con-
ditions, a symbolic address, when used with one of the
conditional jump instructions, may specify the location
to which the jump is addressed.

The location of the next instruction is composed of five
characters. This address is us~lally left blank, which
assumes that the next instruction to be obeyed follows
on the succeeding card. When conditional branching
instructions are used, the operand location and the
location of the next instruction describe the two alterna-
tive paths which the jump selects, the former being taken
if the jump condition is fulfilled.

In addition to these basic specifications, various other
quantities may be included in the SODA instruction.
For many of the orders one column may give the
number of the index register used in the instruction.

Translation Routine ,for DEUCE

Index registers, it will be recalled, are used with arrays
of data, and the element of the array is selected according
to the contents of the index register. Five columns are
used with three special conditional jump instructions,
and are labelled the decrement. The decrement is used
as a comparison for jumps involving the index registers,
or as an operand in modifying the contents of an index
register. The instructions using a decrement are marked
with an asterisk in Appendix 1, Section G. As illustra-
tion, in Example 1, instruction I I is labelled "LOOP."
It places in the upper accumulator one element of
array A (defined by card 1, an array definition control
card). The particular element selected depends upon
the number in index register 1. Instruction 14 causes
the decrement (here 1) to be subtracted from index
register I . If the result is positive, control returns to
instruction 11. If the result is negative, instruction 15
is obeyed next.

SODA instructions are written down directly from a
detailed flow diagram. They are then punched (one per
card) and the cards fed into the machine under the
control of the translation routine. The SODA instruc-
tions are translated at approximately seventeen per
minute. The output of the translator is a pack of cards
punched with a program written in terms of DEUCE
instructions. This pack is placed behind a standard
pack of cards, and the program is then ready to run.

CHECKING THE TRANSLATED PROGRAM

During the translation, a trace (or program-testing)
facility may be built into the machine program by setting
a non-zero number on the input keys. Inclusion of the
trace does not mean that the facility must be used during
the running of the final machine program. During the
running of the machine program, the trace may be
operated in any of three modes. If a negative number is
placed on the input keys, each SODA instruction obeyed
will punch out the contents of the accumulators and
index registers, together with an identification number
of the instruction just enacted. If a non-zero positive
number is set on the keys the program will stop after
each instruction, with an identification of the number of
the operation on the output lights. The various stores
may then be examined on an associated cathode-ray
tube. Zero on the input keys causes the trace facility to
be by-passed, and the program runs without stopping

(except for programmed stops). When the final program
has been completely checked, it may be run either by
this by-passing of the trace feature, or by re-translation
without inclusion of the trace. The latter will result in
a faster program.

RESULTS

SODA has successfully translated many programs.
Reports from the programmers indicate a substantial
time saving over normal DEUCE programming, and
they feel that this will increase as familiarity with SODA
grows. The scheme still includes many programming
details that would not occur in the ideal system. Most
of these result from compromises due to the difficulty of
eliminating them in t he available time. Nevertheless,
SODA users do indicate an appreciable reduction in the
overall programming burden.

SODA produces a less efficient program than could
be written by hand, the decreased efficiency arising from
two main sources. First, a DEUCE program written
bv SODA contains manv more instructions than the
equivalent hand-written program. Secondly, calcula-
tions do not occur simultaneously with the transfer of
information between the drum and the mercurv store.
Simultaneous computation is possible in normal
DEUCE programming. Both effects are a result of
inability to simulate easily the subtleties inherent in
human programming. Nevertheless, the authors feel
that the savings in human labour will more than com-
pensate for the slightly decreased efficiency of the final
DEUCE program.

ACKNOWLEDGEMENTS

The authors are deeply indebted to Professor R. E.
Vowels and the Electrical Engineering Department of
the University of New South Wales for making this
research possible. Specifically we would like to thank
Mr. R. G. Smart, Senior Lecturer in charge of the
UTECOM Computing Laboratory, for assisting with
various details of the SODA program, and for making
machine time available at UTECOM. We especially
wish to express gratitude to Mr. George Karoly who
helped write various portions of SODA, "ironed out"
sundry troublesome details, and provided general
encouragement throughout the development. Lastly, we
would like to thank the Staff at the University and
UTECOM for the assistance in preparing programs for
the machine.

Mr. R. C. Hrigham is now (July 1959) with the Martin Company, Orlando, Florida, and Mr. C. G. Bell is at Speech Com-
munications Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.

Translation Routine for DEUCE

APPENDIX 1

LIST OF SODA INSTRUCTIONS

Instrul

CAS
CSS
ADS
SBS
STS
SSL
SSR
L AS
LOS
LNS

rtions Pertaining to the Short Accun~ulator

- Clear and Add to the Short
- Clear and Subtract from the Short
- ADd to Short
- SuBtract from the Short
- STore the Short
- Shift the Short to the Left
- Shift the Short to the Right
- Logical And with the Short
- Logical Or with the Short
- Logical Non-equivalence with the Short

Instructions Pertaining to the Lower Accumulator

CAL -
CSL -
ADL -
SBL -
STL -
SLL -
SLR -
LAL -
LOL -
LNL -

Clear and Add to the Lower
Clear and Subtract from the Lower
ADd to the Lower
SuBtract from the Lower
STore the Lower
Shift the Lower to the Left
Shift the Lower to the Right
Logical And with the Lower
Logical Or with the Lower
Logical Non-equivalence with the Lower

Instructions Pertaining to the Upper Accumulator

CAU - Clear and Add to the Upper
CSU - Clear and Subtract from the Upper
ADU - ADd to the Upper
SBU - SuBtract from the Upper
STU - STore the Upper
SUL - Shift the Upper to the Left
SUR - Shift the Upper to the Right
LAU - Logical And with the Upper
LOU - Logical Or with the Upper
LNU - Logical Non-equivalence with the Upper
MPY - Multiply
DIV - DIVide

Instructions Pertaining to the Double Accumulator

CAD - Clear and Add to the Double
CSD - Clear and Subtract from the Double
ADD - ADd to the Double
SBD - SuBtract from the Double
STD - STore the Double
SDL - Shift the Double to the Left
SDR - Shift the Double to the Right
ASD - Add a Single-length word to the Double
SSD - Subtract a Single-length word from the

Double

Instructions Pertaining to Floating-point Arithmetic

CAF - Clear and Add a Floating-point number

CSF - Clear and Subtract a Floating-point num-
ber

FAD - Floating-point ADd
FSB - Floating-point SuBtract
STF - STore a Floating-point number
PRF - PRepare a Floating-point number
FMP - Floating-point Multiply
FDV - Floating-point Divide
FSR - Floating-point Square Root
FLG - Floating-point LoGarithm
FEX - Floating-point Exponential
FSN - Floating-point SiNe
FCS - Floating-point Cosine
FAT - Floating-point Arc-Tangent

Instructions Pertaining to the Index Registers

LXP - Load an index register Positive
LXN - Load an index register Negative
LXL - Load an index register positive Less one

unit
ADX - ADd to an index register
SBX - SuBtract from an index register
STX - STore an index register

Decision or Conditional Jump Instructions

JSZ
JSP
JLZ
J L P
JUZ
J U P
JDZ
JDP
JIX
JXH
JXE

- Jump if the Short is Zero
- Jump if the Short is Positive
- Jump if the Lower is Zero
- Jump if the Lower is Positive
- Jump if the Upper is Zero
- Jump if the Upper is Positive
- Jump if the Double is Zero
- Jump if the Double is Positive
- Jump on Index *
- Jump on index High or equal *
- Jump on index Equal *
* This instruction employs a decrement.

Instructions Involving the Working Stores

RWO - Read into Working storage One
RWT - Read into Working storage Two
WWO - Write from Working storage One
WWT - Write from Working storage Two
CWO - Clear Working storage One
CWT - Clear Working storage Two

Instructions Pertaining to Input and Output

RDO - ReaD into working store One from the
reader

RDT - ReaD into working store Two from the
reader

RDC - ReaD a Card

Translation Routine ,for DEUCE

RDA - ReaD Array
RFD - Read Floating Decimal
RDD - Read Decimal Data
PHO - PuncH from working store One
P H T - PuncH from working store Two
P H C - PuncH a Card
PHA - PuncH Array
P F D - Punch Floating Decimal
P H D - PuncH Decimal
RIL - Read from the Input Lights
WOL - Write into the Output Lights
C O L - Clear the Output Lights

J. Miscrllaneous Instructions
S T Z - STore a Zero
S T 0 - STore a One
STA - STore a n Address unit
S T H - STore a High position bit
STM - STore a Minus one
ACA - Activate Alarm
SPA - S t o p Alarm
ENS - ENter SODA Subroutine
LVS - Leave SODA Subroutine
H P R - Halt and PRoceed
STP - STOP

APPENDIX 2

EXAMPLES OF SODA PROGRAMMING

Exunrple I -Vector Dot Product:

Let the vectors A and R be any dimension n, less than 1025. The parameter n will be read in initially, followed by
the vectors. Refer to Appendix 1 for a list of the instructions.

Coding:

There are two initial control cards:

Curd nrrmbcr Pnnching

1 3, A - , 255, 1024

The regular SODA program is:

Locutior~ o/' Opero-
this instrucfion rion

BEGIN RDC

LXP

RDA

RDA

RWO
RWT
STZ

SBX

LOOP - CA U

M PY
ADS

JIX

STS
PHC

Commcnls

Array A is defined. Its last track on the drum is 255; it has a
maximum of 1024 elements (32 tracks).
Array B is similarly defined. Its last track is track 223; it too has
a maximum of 1024 elements.

Location ol
next instr~rction

LOOP-

BEGIN

82

Index
Register D e ~ r r r i ~ o r t Comment,

n in index register units is read into
location 00000.

1 Index register (IR) I is made equal
to n.
Vector A is read to the drum. The
number of elements read is equal to
the number in IR 1.
Vector B is read to the drum, again
according to the number in IR 1.
A is placed in working store one.
B is placed in working store two.
Short accumulator (which has oper-
and address code number 100) is set
to zero.

1 I is subtracted from IR I . Operand
address of 104 indicates a 1 in IR
units.

I A is placed in upper. IR I selects a
particular element of array A.

1 A, x B, formed.
The product (in upper, designated as
102) added to partial sum in short.

I 00001 1 is subtracted from IR 1. Jump is
made to instruction 15 if result is
negative. Otherwise control is re-
turned to instruction 1 1.
Answer stored in location 64.
The answer is punched; control
returns to beginning.

Translation Routine ,for DEUCE

Final Control Card:

Cord nunihcr Pff~ichLg

17 I , BEGIN

Comment I
This is known as a type I control. I t specifies the address of
the first instruction to be obeyed. Here the first one is
"BEGIN," associated with instruction 3.

Note: A minus sign in an address indicates a blank column. I
Example 2-Transpose an m by n Matrix:

Given a Matrix A of m rows and n columns, produce
its n by m transpose B. The elements of the matrices
are punched and stored row-by-row, starting with the
first row and with no gaps between rows. SODA would
not normally be used for matrix manipulation, but this
example is included to illustrate certain programming
techniques. The flow chart is shown in ~ i ~ . 2.

Coding:

There are 7 initial control cards:

Card number Punching

1 2

3, 4, 5 Blank

6 3, AMN- -, 255, 1024
7 3, BNM- -, 223, 1024

The regular SODA program is:

Card Location of'
nifnlbrr this instruction

8 START

Opcm-
t b n

RDC

CAU
CAS
STU

STS

STS
MPY

SUL

STU
PHC
LXP

RDA

RWO

Operand
address

00000

00001
00000
00000

0000 1

MM---
MM---

0001 6

MN---
00000
MN---.

AMN--

AMN- --

READ IN PARAMETERS m AND n F O R A

I
F O R M m X n F O R READING A.
P U N C H PARAMETERS n A N D m F O R B

J
READ IN MATRIX A .

0 -3 k
0 - i

(LESS THAN
OR EQUAL)

I i + m COMPARED WITH m X n a

FIG. 2.-Flow diagram for Example 2.

Commcntr

This is a type 2 control card and indicates that the names of
constants and temporary storage locations are going to be
specified on the next cards.
These are the names of the storage locations used. There
are 3. The 4 tells SODA that this is the last card defining names.
If any of the above definitions refer to constants, the binary
equivalents of the constants are placed on these cards.
The original array AMN is defined.
The output array BNM is defined.

Locution o/ Index Decrc-
Next itf.strrfction Rcgister mmf Comments

Parameter card for matrix AMN.
m goes to location 00000, n to 00001.
rn and n are in IR units.
n is placed in the upper.
rn is placed in the short.
The two parameters m and n are
interchanged. The parameter card
for BNM (matrix B) will be punched
before the matrix.
m stored for future use.
rn x n formed. (Because n is in the
upper.)
The upper is shifted left 16 places.
This is necessary because of the
details of multiplication.
rn x n is stored.
Parameter card for BNM punched.
IR 1 loaded with rn x n for reading
AMN to the drum. When reading to
or punching from drum, IR 1 states
the number of elements in the array.
Matrix AMN (matrix A) read to
drum.
AMN placed in working storc I .

Translation Routine for DEUCE
Curd

 umber

2 1

22

23

24

25

26

27

28

29

30
3 1

32

33

Locution o/
this instru~tiorr

TRANS

LOOP-

END---

Final Control Card:

Operu-
lion

RWT

LXP

JIX

LXP

SBX

STX

CAS

STS

.IIX

SRX
WWT

FHA

STP

Cirrd nronhcr

34

REFERENCES

BNM--

M N - - -

MN-. --

00 104

M N - - -

AMN--

BNM - -

00 lo4
BNM

BNM--

TRANS

END--

LOOP-

TRANS

LOOP-

Decre-
nwnl C o~1n i~~ml \

BNM placed in working store 2. This
is necessary even though no informa-
tion is yet in BNM.
I R 2 set with ni x n for reading
elements of AMN.

0000 1 1 is subtracted from 1R 2. Trans-
pose is completed if result is negative.
An 1R containing nin - i elements
will select the ith element of an array
of nm elements.
I R 3 set with m x n for storing
elements of BNM.
1 (code 104) is subtracted from 1R 3.
Instructions 24 and 25 could be
replaced by thesingle operation LXL.
Results stored as new value in
location MN.
The elements of AMN are taken and
stored as the elements of BNM,
according to the specified index
registers.

MM- - - Index for BNM decreased by the
number in location MM. It is seen
that a symbolic decrement may be
specified.
Index for A M N decreased by I .
BNM returned to the drum from
working store 2 so that it may be
punched from the drum.
Matrix BNM is punched. The cor-
rect number of elements is still in
IR 1 .
Stop. The transpose program is com-
pleted.

The program obeys instruction 8 first.

ADAMS, C. W. (1952). "Small Problems on Large Computers," Proceedings of Joint ACMIMellon Institute ConJrrence, May 2-3,
1952, Richard Rimbach Associates, Pittsburgh 12, Pennsylvania.

BELL, C. G., and BRICHAM, R. C. (1958). SODA Manual of Opc,ration, School of Electrical Engineering, University of New
South Wales, Sydney, N.S.W., Australia.

HALEY, A. C. D . (1956). "DEUCE: a High-speed General-purpose Computer," Pvoc. I.E.E., Vol. 103, Part B, Supplement
No. 2, p. 165.

HAMBLIN, C. L. (1958). "GEORGE, A Semi-translation Programming Scheme for DEUCE," Pvogvamnring and Oprrution
Manual, School of Humanities, University of New South Wales, Kensington, N.S.W., Australia.

ROBINSON, C. (1959). "DEUCE Interpretive Programs," Computer Journal, Vol. 1 , p. 172.

UNWIN YROTIIGBS LIMTBD. WORIUO AND LONDOS

