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Writing Mesh and Nodal Equations Directly in Matrix Form

Prologue
In this tutorial, we look at a method for writing circuit equations in matrix form directly from a circuit diagram – see Note 3. (Sometimes this is referred to as writing the equations by inspection. What this means is that, for many circuits, all the additions and subtractions required to set up the elements of the matrices are so simple that they can be done in your head with little or no intermediate paperwork required, thus enabling you to write the equations directly in matrix form simply by looking at the circuit schematics.) 

All examples in this tutorial are taken from the text books indicated in the boxed note. Part A deals with DC circuits (Chapter 8), while Part B deals with AC circuits (Chapter 19). Note also that the matrix representation is applicable also to coupled circuits as in Chapter 23.

Part A 
DC Circuits

Introduction
To begin, let us look at a typical matrix equation. (Don’t worry that you don’t understand exactly what this representation means or how we got the result(just concentrate on the overall idea. We will soon get to the details.) The circuit from which this equation was obtained is Figure 8-22 (Example 8-10) of the text. Here is the matrix equation:
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As you will soon see, this equation is just a shorthand way of representing the mesh equations that you learned how to write using the format approach outlined in the text. It thus contains all of the information about the resistances in the circuit and the given voltages(thus, it contains all the information that you need in order to solve for the unknown currents.

The next question that you have may be “why do we bother?” Well, once you get past the early introductory stages of learning circuit analysis, you will find that there are good reasons:

1. The matrix approach provides an orderly and systematic approach that usually results in fewer errors.

2. In practice, most circuit analysts routinely use matrix methods in their work.

3. Many calculators have built-in matrix functions for solving simultaneous equations and their operational instructions are couched in the language of matrices.

4. Many computer software programs are set up in the language of matrix algebra and require data entry as matrices.

5. The data in a matrix equation is automatically organized in the form that you need for its solution, whether it be by calculator, by determinants, or by a computer program such as Mathcad.

Some Background

The method of matrix representation is based on a branch of mathematics known as matrix algebra. Fortunately, however, we need look only at matrices in a very limited sense and have no need to delve deeply into the mathematics of matrix algebra. However, we need some of its terminology. Let us therefore begin by introducing some of the language and notation of matrix algebra.

Defining a Matrix

In its simplest form, a matrix is simply an ordered array of numbers or symbols enclosed within square or round brackets(see Note 1. To illustrate, consider the following mesh equations from Example 8-10 of the text book.




  4 I1 ( 2 I2 = 2



(1a)




( 2I1 + 6 I2 = 6


(1b)

Let us now gather up the coefficients of the currents and place them in an array in exactly the same order as in these equations. Thus:
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(2)

This representation is referred to as a matrix( see Note 2. However, it is very important to realize that the array of numbers in the box is simply just that​( it is an array and there are no implied additions or subtractions of the numbers contained therein. In fact, it may be helpful to think of the matrix as a storage box with a number of pigeon holes, with each pigeon hole containing one number or symbol of the array. To illustrate:
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Let us return to the array (2). Since its contents consist of the coefficients of equations (1a) and (1b) and since these coefficients are based on the resistances of the network, we can call this matrix the [R] matrix. Thus:
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(3)

Because the array is a square, it is called a square matrix.

Other Matrix Forms
Matrices may also be encountered as column matrices and as row matrices. (However, we don’t have need for row matrices here, so we won’t discuss them.) A column matrix is a matrix that has only one column of data, rather than several as above. For example, a column matrix may be written for the voltage terms in Equations (1a) and (1b) as:
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(4)

Because the voltage terms are stacked vertically in Equations (1a) and (1b), it is natural to think of them as forming a column of data as we have indicated in Equation (4). However, what about the current terms in Equations (1a) and (1b)? For reasons that we won’t go into here (the reasons are buried deeply in the theory of matrix algebra), the currents are also represented as a column matrix. Thus:
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(5)

Representing Circuit Equations in Matrix Form

We can now represent Equations (1a) and (1b) in matrix form. Here is the representation:
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(5)

Note that the coefficients are arranged in exactly the form that you need in order to solve the equation. For example, if you want to solve by determinants, you abstract the data from the square matrix of Equation (5) and make it the determinant in the denominator of the determinant equation as illustrated below. You then abstract the data from the column matrix on the right hand side of the equal sign and successively substitute in the numerator of the determinant equation, then evaluate. Thus:
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If you are using a calculator or a computer program like Mathcad, you will find that data entry also follows the pattern laid out in the matrices of Equation (5).

Shorthand Representation of Equation 5

Equation (5) is in what may be called the expanded matrix form. In theoretical discussions however, it is often necessary to talk in general terms, rather than specific terms. Thus, you may see circuit equations set out in the more general matrix form:




[R][I] = [E]



(6)

Note that, although this looks like Ohm’s law, the quantities are in fact matrix arrays of numbers or symbols. Although this equation can be manipulated according to the rules of matrix algebra, we won’t do that here(we look upon Equation (6) as just a way to represent a set of mesh equations in a shorthand notation.


Before we move on, we should note that the size of the matrices for any given circuit problem will correspond to the number of equations in the set. Thus, a set of two equations is represented by a 2 × 2 resistance matrix and 1 × 2 column matrices for voltage and current. Similarly, a set of three equations is represented by a 3 × 3 resistance matrix and 1 × 3 column matrices for voltage and current.

Mesh Analysis Using the Matrix Approach

Consider again the format approach discussed in Section 8.5 of the text(see boxed note. To aid our discussion, let us set out the coefficients of the resistance matrix in the general notation R11, R12, etc as used in the text. For a two-loop circuit, we have:
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(7)

As discussed in the text, R11 is the sum of resistances encountered as you go around loop 1; R22 is the sum of resistances encountered as you go around loop 2; and R12 (which equals R21) is the negative of the resistance that is in the branch common to both loops 1 and 2. Next, consider the voltage matrix:
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(8)

Here, E1 is the algebraic sum of the voltage sources in loop 1, while E2 is the algebraic sum of the voltage sources in loop 2. (When summing algebraically, remember that a voltage source is considered positive if its polarity is such that it is trying to drive current in the direction indicated by the current reference arrow for that loop, and negative if it is trying to drive current in the direction opposite to the current reference.) The matrix equation (6) can now be set out in expanded form for a two-loop circuit as:
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(9)

where I1and I2 are the unknown currents and everything else is known. 


Let us apply these ideas to the circuit of Figure 8-22, Example 8-10 of the text. (Assume all resistances are in ohms and all source voltages are in volts so that we do not have to show units in the equation.) Consider each element of the various matrices in turn:

R11:
This is the sum of resistance in loop 1. Thus, R11 = 2 + 2 = 4

R12:
This is minus the resistance in the branch common to loops 1 and 2. Thus, R12 = (2

R21:
Note that R21 = R12. (This is always true.)

R22:
This is the sum of resistance in loop 2. Thus, R22 = 2 + 4 = 6

E1:
This is the algebraic sum of voltage sources in loop 1. Thus, E1 = 6 ( 4 = 2

E2:
This is the algebraic sum of voltage sources in loop 2. Thus, E2 = 4 + 2 = 6

Inserting these numbers into Equation (9) yields: 
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as we saw earlier. This can now be solved using your chosen method, be it by calculator, by computer, or by determinants. (Answers are: I1 = 1.2 A and I2 = 1.4 A.) Note also that the additions and subtractions involved in determining the matrix elements in this example were so simple that we could have written them directly into the matrix equation without first setting them down on paper. (This is what we mean by writing the equations by inspection. With a little practice, you should become comfortable with this approach.) 

Symmetry: 
Note the off-diagonal symmetry in the above 



equation (brought about because R21 = R12). 



For circuits with independent sources (see 



boxed note, off-diagonal symmetry always 



holds true regardless of the size of the matrix 



If you don’t have off-diagonal symmetry for

such a circuit, you have made a mistake. 

Another Example

Consider Figure 8-24, Example 8-11 of the text. Again, this is a two-loop circuit. By inspection, we see that R11 = 2 + 3 = 5, R21 = R12 = (3, R22 = 3 + 1 = 4, E1 = (10 ( 8 = (18 and E2 = 8 ( 6 = 2. Entering these values into the matrix, Equation (9) yields: 
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This can now be solved using your chosen method. Answers are I1 = (6 A, and I2 = (4 A.

A Three-Loop Example

Consider Figure 8-29 of the text. Applying the same principles as above, we get the following matrix equation:
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Answers here are I1 = 3 A, I2 = 2 A, and I3 = 5 A.

Hint

When preparing a large resistance matrix, it often helps to pencil in row/column identifiers as shown below. (I do this(I lightly pencil numbers in, figure out the coefficients, then erase the pencil marks. The implied intersection of the row and column identifiers helps me keep track of which coefficient I am working on(for example, R13 = (9 in this example.)




     1           2         3
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Practice Problems

Write mesh equations in matrix form for all end-of-chapter problems for Section 8.5 of the text.

Nodal Analysis Using the Matrix Approach

The nodal case follows the same general principles as outlined above except that we use conductances instead of resistances and source currents instead of source voltages. The general form may be written as:




[G][V] = [I]




(10)

where [G] is the matrix of conductance coefficients, [V] is the matrix of unknown voltages, and [I] is the matrix of source currents. To illustrate, consider the simplified equations for Figure 8-31 of Example 8-14. These equations are found at the end of Step 6 and are




  0.075 V1 ( 0.025 V2 = 250 mA

(11a)




( 0.025V1 + 0.0583 V2 = 150 mA

(11b)

where conductance units are in siemens.  In matrix form, these equations can be expressed as 
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where we have converted mA to amps. This can now be solved in the usual manner. Answers are V1 = 4.89 V and V2 = 4.67 V.

Writing Matrix Nodal Equations by Inspection

Let us expand Equation (10) using the symbology of Section 8.6 of the text. For a two-node circuit, the general form of the expanded matrix equation is
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(12)

where the definition of each element of these matrices is as described in the text. Specifically:

G11:
This is the sum of conductances connected to Node 1.

G12:
This is minus the conductance in the branch connecting Nodes 1 and 2.

G21:
Note that G21 = G12. (This is always true.)

G22:
This is the sum of conductances connected to Node 2.

I1:
This is the algebraic sum of source currents entering Node 1.

I2:
This is the algebraic sum of source currents entering Node 2.


To illustrate, see Figure 8-34 of Example 8-16. Here, G11 = 1/3 + 1/5 = 0.533 = 0.533, G12 = G21 = (1/5 = (0.2, G22 = 1/5 + ¼ = 0.450, I1 = (6 + 1 = (5, and I2 = (1 ( 2 = (3. Entering these values into Equation 12 yields:
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You can now solve this in the usual manner. Answers are V1 = (14.3 V and V2 = (13.0 V.

A Three-Node Example

Consider Figure 8-38 of the text. First, do the necessary preliminary conversion, then apply the same principles as above. You should get the following matrix equation:
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Answers are V1 = 3 V, V2 = 6 V, and V3 = (2 V.

Part B
AC Circuits

Mesh Analysis(the AC Case

Exactly the same principles of matrix methods as applied to DC circuits holds for AC circuits. The big difference is that you use impedances instead of resistances and all voltages and currents are phasor quantities(i.e., numbers are complex rather than real. Again, we will look only at circuits with independent sources. The general form of the matrix for this case is:




[Z][I] = [E]




(13)

In expanded form (for a two-loop circuit) this becomes:
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 (14)

Example 
Consider the two-loop AC circuit of Figure 19-13, Example 19-5 in Section 19.3 of the text. Assume loop currents in the clockwise direction. Z11 is the sum of the impedances around loop 1(thus, Z11 = 1 + 3 (j3 = 4 ( j 3. Next, Z12 = (1, and Z22 = 2 + j4 + 1 = 3 + j4. (Note that symmetry holds for the AC case as well. Thus Z21 = Z12 = (1.) There is only one source in loop 1 and its polarity is such that it is trying to drive current in the direction opposite to direction of I1​(thus, it appears with a minus sign, i.e., E1 = (5 V(0º. Similarly, E2 = (5 V(0º. Inserting these values into their corresponding matrices yields:
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The solution to this equation requires a calculator or a computer program like Mathcad that can solve equations with complex coefficients (or alternatively, you can use the technique outlined on the CD entitled Solving Simultaneous Equations with Complex Coefficients), or you can solve them manually using determinants. Answers are 




I1 = 1.18 A ((151.9º






I2 = 1.21 A (132.1º

A Three-Loop Example

Consider Figure 19-18 Example 19-7 of the text. (Use the loop current assignments shown in Figure 19-19). The matrix equation here is:
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Answers are: 

I1 = 6.32 A ((11.1º






I2 = 4.5 A (0º




I3 = 6.05 A (21.2º

Nodal Analysis – the AC Case
For the AC nodal case, use admittances instead of conductances and phasors for voltages and currents. As before, we will look only at circuits with independent sources. The general form of the matrix equation for this case is:




[Y][V] = [I]




(15)

In expanded form (for a two-node circuit) this becomes:
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(16)

where the various elements of these matrices are as defined in Section 19.4 of the text.

A Two-Node Example

Consider the circuit of Figure 19-21, Example 19-8 of the text. Node identifications are shown in Figure 19-22. Note that Y11 = ½ + 1/(j2) = 0.5 ( j 0.5, Y12 = (1/(j2) = j 0.5 and Y22 = 1/(j2) + 1/(( j4) = ( j0.25, all in siemens and currents have units of amps. Substituting values into the matrix of Equation 16 yields:
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Answers are:

V1 = 4.24 V (135º




V2 = 6.32 V ((161.6º

A Closer Look at Admittance Parameters

When you have a resistive plus a reactive element connected in series, you need to be particularly careful of how you compute the admittance of the series combination. To illustrate, suppose you have a resistance of 3 ohms in series with an inductive reactance of 4 ohms. The impedance of the series connection is Z = 3 + j 4 ( (few people make an error in this), but its admittance is 0.12 ( j 0.16 S, since by definition, 
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 However, a common error is to try to compute the admittance as 
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which yields an answer of 0.333 ( j 0.25, an answer that is clearly wrong as you can see by comparing it to the correct computation. Be particularly careful about situations such as this. (An easy way to deal with this is to enter the impedance value in your calculator, then press the inverse key (sometimes denoted as the x(1 key) to obtain admittance.)

Practice Problems

Using matrices analysis, 

1. Do Practice Problem 4 of Section 19.4

2. Do all end-of-chapter problems associated with Section 19.4

Notes





In practice, two sets of notation are commonly used, square brackets [  ] as in (2) or rounded brackets  (  ).  In this tutorial, we use square brackets only. 


The representation of (2) looks much like a determinant. However, it is not a determinant, although a square matrix does have a determinant.  (The deter-minant of (2) for example is � EMBED Equation.3  ��� which eval -uates to 20.) A matrix is a different entity than a determinant( it is simply an array of numbers with no actual or implied arithmetic reduction( see text.





Note





Note that the format approach assumes that all loop currents are in the windows of the network and that all are in the clockwise direction. These assumptions must carry through to the matrix representation. 








Notes


In this tutorial, we will be referencing material from the text book Circuit Analysis: Theory and Practice (or alternatively Circuit Analysis with Devices: Theory and Practice) by Robbins and Miller. You will need one of these books at hand to follow the presentation.


Much of this material you will have seen at appropriate places in various chapters throughout the book. This tutorial brings it all together in one place and adds additional information that could not be fitted into the text book itself.


The word matrices is the plural of the word matrix. (We will define  these terms shortly.)
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Symmetry





Independent sources are the only source types considered in the first 18 chapters of this book. For dependent sources, you might not have symmetry.
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