TTLS (Subtitle)

LOCATION |Ef OPERATION ADDRESS, MODIFIER COMMENTS
o
12 6l7ls 141 32
Blanks | ITTLS Subtitle in the variable field
or an
linteger

The TTLS pseudo-operation is identical in function to the TTL pseudo-operation except that it
causes subtitling to occur. When a TTLS pseudo-operation is encountered, the subtitle provided
in columns 16-72 replaces the current subtitle; the output listing is restored to the top of the next
page. The title and new subtitle are then printed.

The maximum number of subtitles thatmay follow a title is one.

ABS (Output Absolute Text)

LOCATION |E] OPERATION ADDRESS, MODIFIER COMMENTS
o
12 6 7r§ 14115016 32
Blanks| |ABS Column 16 must be blank

The ABS pseudo-operation causes the Assembler to output absolute binary text.

The normal mode of the Assembler is relocatable; however, if absolute text is required for a
given assembly, the ABS pseudo-operation should appear in the deck before any instructions or
data. It may be preceded only by listing pseudo-operations. It may, however, appear repeatedly
in an assembly interspersed with the FUL pseudo-operation. "It should be noted that the pseudo-
operations affecting relocation are considered errors in an absolute assembly.

Those pseudo-operations that will be in error if used in an absolute assembly are:

BLOCK SYMDEF
ERLK SYMREF

(Refer to the descriptions of binary punched cardformats in this chapter for details of the absolute
binary text.)

GE-600 SERIES

III-34

FUL (OUTPUT Full Binary Text)

LOCATION OPERATION ADDRESS, MODIFIER COMMENTS
(5]
7

1.2 6 14]15016 32
Blanks| FUL Column 16 must be blank

The FUL pseudo-operation is used to specify absolute assembly and the FUL format for absolute
binary text.

The FUL pseudo-operation has the same effect and restrictions on the Assembler as ABS, except
for the format of the binary text output. The format of the text is of continuous information with
no address identification; that is, the absolute binary cards are punched with program instructions
in columns 1-78 (26 words). Such cards can be used in self-loading operations or other environ-
ments where control words are not required on the binary card.

TCD (Punch Transfer Card)

LOCATION 5 OPERATION ADDRESS, MODIFIER COMMENTS
0
12 6 7rg 14[15)16 32
Blanks| { TCD An expression in the variable field
or a
sy mbol

In an absolute assembly, the binary transfer card, produced at the end of the deck as a result of
the END card, directs the loading program to cease loading and turn control over tothe program
at the point specified by the transfer card. Sometimes it is desirable to cause a transfer card
to be produced before encountering the end of the deck. This is the purpose of the TCD pseudo-
operation. Thus, a binary transfer card is produced generating a transfer address equivalent to
the value of the expression in the variable field.

TCD is an error in the relocatable mode.

HEAD (Heading)

LOCATION [Ef OPERATION ADDRESS, MODIFIER COMMENTS
G
12 6718 14]15]16
Blanks | [HEAD From 1 to 7 subfields in the variable field,

each containing a single, nonspecial character

used as a heading character

Gle-600 SERIES

II1 -35

In programming, it is sometimes desirable to combine two programs, or sections of the same
program, that use the same symbols for different purposes. The HEAD pseudo-operation makes
such a combination possible by prefixing each symbol of five or fewer characters with a heading
character. This character must not be one of the special characters; that is, it must be one of
the characters A-Z, 0-9, or the period(.). Using different heading characters, in different program

sections later to be combined for assembly, removes any ambiguity as to the definition of a given
symbol.

The effect of the HEAD pseudo-operation is to cause every symbol of five or less characters,
appearing in either the location field or the variable field, to be prefixed by the current HEAD
character. The current HEAD character applies to all symbols appearing after the current HEAD
pseudo-operation and before the next HEAD or END pseudo-operation.

Deheading isaccomplishedby a zero or blanks in the variable field. To understand more thoroughly
the operation of the heading function, itis necessary to know that the Assembler internally creates
a six-character symbol by right-justifying the characters of the symbol and filling in leading zeros.
Thus, if the Assembler is within a headed program section and encounters a symbol of five or fewer
characters, it inserts the current HEAD character into the high-order, leftmost character position
of the symbol. Each symbol, withitsinserted HEAD character, then can be placed in the Assembler
symbol table as unique entries and assigned their respective location values.

It is also possible to head a program section with more than one character., This is done by using
the pseudo-operation HEAD in the operation field with from two to seven heading characters in the
variable field, separated by commas. The effect of a multiple heading is to define each symbol

of that section once for eachheading character. Thus, for example, if the symbols SHEAR, SPEED,
and PRESS are headed by

HEAD X,Y,Z

nine unique symbols
XSHEAR XSPEED XPRESS
YSHEAR YSPEED YPRESS
ZSHEAR ZSPEED ZPRESS

are generated and placed in the Assembler symbol table. This allows regions by HEADX, HEADY,
or HEADZ to obtain identical values for the symbols SHEAR, SPEED, and PRESS.

Cross-referencing among differently headed sections may be accomplished by the use of six-
character symbols or by the use of the dollar sign ($). Six character symbols are immune to
HEAD; therefore, they provide a convenient method of cross-referencing among differently headed
regions.

To allow the programmer more flexibility in cross-referencing, the Assembler language includes
the use of the dollar sign ($) to denote references to an alien-headed region.

If the programmer wishes to reference a symbol of less than six characters in another program
section, he merely prefixes the symbol by the HEAD character for that respective section,
separating the HEAD character from the body of the symbol by a dollar sign ($).

BE-GOO SRS

II1-36

To reference from a headed region into a region that is not headed, the programmer may use
either the heading character zero (0) preceding the symbol or if the symbol is the initial value
of the variable field, then the appearance of the leading dollar sign will cause the zero heading to
be attached to the symbol.

EXAMPLE OF HEAD PSEUDO-OPERATION

START LDA A Initial instruction (no heading)
TRA B$SUM Transfer to new headed section
A BSS 1
HEAD B
SUM LDA $A
::: Section headed B
TRA 0$START + 2
END

The LDA $A could have been written as LDA 0$A, as they both mean the same.

DCARD (Punch BCD Card)

LOCATION |E| OPERATION ADDRESS, MODIFIER ’ COMMENTS
o
12 6lrls 14)1516 32
Blanks| IDCARD Two subfields in the variable field

The first subfield contains a decimal integer N (limited only by the size of available memory), and
the record subfield containsa single BCD characterused as a decimal data identifier. The Assem-
bler punches the next N cards after the DCARD instruction with the specified BCD identifier in
column one of each of these N cards and with the BCD information taken from the corresponding
source cards on a one-for-one basis.

There are no restrictions on the BCD information that can be placed in columns 2-72 of the source
cards. (One of the significant uses of DCARD is to generate Operating Supervisor (GECOS) $
control cards.)

The DCARD has the further effect of suppressing the normal automatic generation of a $ OBJECT
and $ DKEND card.

E-GOO SRS I

II1-37

END (End of Assembly)

OPERATION ADDRESS, MODIFIER COMMENTS

LOCATION (E
4
1.2 al7ls 1415116 32
Blanks| {END Blanks or an expression in the

lor a variable field
Sy mbol -

The END pseudo-operation signals the Assembler that ithas reached the end of the symbolic input
deck; it must be present as the last physical card encountered by the Assembler.

If a symbol appears in the location field, it is assigned the next available location.

In a relocatable assembly, the variable field must be blank; in an absolute assembly, the variable
may contain an expression. In relocatable decks, the starting location of the program will be an
entry location and the location specified is given to the General Loader (GELOAD) by a special
control card used with the GELOAD. (Refer to the GELOAD manual.) Absolute programs require
a binary transfer card which is generated by the END pseudo-operation. The Transfer address
is obtained from the expression in the variable field of the END card.

OPD (Operation Definition)

LOCATION |E| OPERATION ADDRESS, MODIFIER . COMMENTS

12 6 (7)8 1415016 32
New | {OPD One or more subfields, separated by commas,
| opera-| in the variable field. The subfields define the
tion 11 bit configuration of the new operation code
code -

P*-——-"

The OPD pseudo-operation may be used to define or redefine machine instructions to the Assem-
bler. This allows programmers to add operation codes to the Assembler table of operation codes
during the assembly process. This is extremely useful and powerful in defining new instructions
or special bit configurations, unique in a particular program, to the Assembler.

The variable field subfields are bit-oriented and have the same general form as described under
the VFD pseudo-operation. In addition, the variable field, considered in its entirety, requires
the use of either of two specific 36-bit formats for defining the operation.

1. The normal instruction format
2. The input/output operation format

BlE-600 SERIES

II1- 38

The normal instruction-defining format and subfields are shown below:

0 11 12 17 18 26 30 31 3334 35

o

op--new operation code (bits 18 through 29 of instruction)
m--modifier tag type (0-allowed; 1=-not allowed)
m,: register modification (R)

mét indirect addressing (*)

m: indirect and tally (T)

m,: Direct Upper (DU)

m_: Direct Lower (DL)

mgz Sequence Character (SC) and Character from Indirect (CI)

a--address field conditions (0 not required; 1-required)
: address required/not required

a,! address required even

a3: address required absolute

ag symbolic index required

5 octal tag field required

p--octal assembly listing format (x represents one octal digit)
00:; XX XXXX XXXXXX
01: XXXXXXXXXXXX
10; XXXXXX XXXXXX
11: XXXXXX XXXX XX

The assembly listing types 00, 01, 10,and 11 are used for input/output commands, data-generating
pseudo-operations (OCT, DEC, BCI, etc.), special word-generating pseudo-operations (such as
ZEROQO), and machine instructions.

To illustrate the use of OPD, assume one wished to define the extant machine instruction, Load
A (LDA). Using the preceding format and the octal notation (as described under the VFD pseudo-
operation), one could code OPD as

or LDA OPD 012/2350, 6/,02/2,6/,03/4,5/,02/5
or LDA OPD 018/235000, 02/2, 6/, 03/4,5/,02/53
LDA OoPD 036/235000401003

or in other forms, providing the bit positions of the instruction-defining format are individually
specified to the Assembler.

The input/output operation-defining format and subfields are as follows:

op

op
(bit positions 18-35) 1|1 (bits D-5) aylaglaa] 1 plop

\

0 17 18 1920 25 2627 28 29 30 31 33 34 35

GE-600 SERIES

I1I-39

op--new operation code for bit positions 18-35 and 0-5 (see Appendix E)
a--address field conditions (0=not required; l=required)
aj: address required/not required
a9: address required even
43: address required absolute
i--type of input/output command (see Appendix E)

00: OP DA,CA KKDACAKKKKKK
01: OP NN,DA,CA KKDACAKKKKNN
10: OP CC,DA,CA KKDACAKKCCKK
11: OP A,C AAAAAAKKCCCC

p--see preceding normal instruction format

Input/output operation types 00, 01, and 10 are the formats for the commands: type 11 is the format
for a Data Control Word (DCW).

As an example of the use of OPD to generate an input/output command (using the above format for
the variable field and defining the bits according to the rules for VFD), assume one wanted to
generate the extant command, Write Tape Binary (WTB--Appendix E). This could be written as

WTB OPD 18/,02/3,06/15,10/0

or in various other bit-oriented forms.

OPSYN (Operation Synonym)

A sym- OPSYN A mnemonic operation code in the
bol or variable field.

opera-
tion

‘code
“—_— Lo

The OPSYN pseudo-operation is used for equating either a newly defined symbol or a presently
defined operation to some operation code already in the operation table of the Assembler. The
operation code may have been defined by a prior OPD or OPSYN pseudo-operation; in any case,
it must be in the Assembler operation table. The new symbol to be defined is entered in the
location field and the operation code that must be in the Assembler operation table is entered in
the variable field.

GE-600 SERIES

II1-40

Location Counter Pseudo-Operations

USE (Use Multiple Location Counters)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
0
12 6l7ls 14[15016
Blanks| |USE A single symbol, blanks, or the word
PREVIOUS in the variable field
_ﬁ

The Assembler provides the ability to employ multiple location counters via the USE pseudo-
operation. The use of this pseudo-operation causes the Assembler to place succeeding instructions
under control of the location counter represented by the symbol in the variable field. Each location
counter begins with the wvalue of zero, and its size is determined as being the highest value
assumed by it (that is, occupied by some instruction assembled under it). This is not always the
last instruction under the USE, as an ORG may have occurred within it. At the completion of
the first pass through the symbolic program, the length of each USE will be a known value, and
the order of their memory allocation will be implied by the order of their first presentation to the
Assembler. Thus, the origin of each location counter may be computed based on the origin and
size of the one preceding it. There is an assumed location counter, called the blank USE, implied
in all assemblies, which has a natural origin of zero.

Automatic determination of a counter origin may be overridden with the BEGIN pseudo-operation.
In this case, the chain of location counters will be made, completely ignoring those counters which
had an associated BEGIN. In more general terms, then, the origin of a non-begin location counter
is taken as one more than the highest value taken by the next prior non-begin counter. The first
of these non-begin counters has an origin of zero, by definition. The location counter which is in
control at the time that a USE is encountered is suspended at its current value and is preserved
as the PREVIOUS counter. It may be called back into operation at any later point in the program
without confusion as to its current state, and will begin counting at the address which is one
higher than the last location used under it.

If the word PREVIOUS appearsinthe variable field, the Assembler reactivates the location counter
which appeared just before the present one. It is not possible to go back more than one level via
the USE PREVIOUS command, as the one in controlwhen the USE PREVIOUS is encountered is
made previous.

BEGIN (Origin of a Location Counter)

LOCATION

; OPERATION ADDRESS, MODIFIER COMMENTS
§)
12 6718 14/1516 2
Blanks| | BEGIN __ | Two subfields in the variable field

GE-600 SERIES

II1-41

The BEGIN pseudo-operation is used to arbitrarily specify the origin of a given location counter.
As such, it will not be tied into the chain of location counters as described in USE. Its origin,
however, may be an expression involving some symbol or symbols defined under another location
counter, in which case it will be linked to the chain at the specified point. The user must beware
of overlaying code with this pseudo-operation. It is primarily intended for the more sophisticated
user. Under normal programming circumstances its power is not needed.

The location counter symbol is specified in the first subfield and is given the value specified by
the expression found in the second subfield. Any symbol appearing in the second subfield must have

been previously defined and must appear under one location counter. The BEGIN pseudo-operation
may appear anywhere in the deck, It does not invoke the counter, however. A USE must be

given to bring a location counter into effect.

ORG (Origin Set by Programmer)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
o
12 6l7l8 14)1516 32
Blanks RG An expression in the variable field
or a
isymbol)
‘g

The ORG pseudo-operation is used by the programmer to change the next value of a counter, nor-
mally assigned by the Assembler, to a desired value. If ORG is not used by the programmer,
the counter is initially set to zero.

All symbols appearing in the variable field musthave been previously defined. If a symbol appears
in the location field, it is assigned the value of the variable field. If the result of the evaluation
of a variable field expression is absolute, the instruction counter will be reset to the specified
value relative to the current location counter. If an expression result is relocatable, the current
location counter will be suspended, and the counter to which the expression is relocated will he
invoked with the value given by the expression.

LOC (Location of Qutput Text)

lzocnlw E| OPERATION ADDRESS, MODIFIER COMMENTS
0
12 6|78 14[15]16 32
Blanks| [LOC _ An expression in the var iable field

The LOC pseudo-operation functions identically to the ORG pseudo-operation, with one exception;
it has no effect on the loading address when the Assembler is punching binary text. That is, the
value of the location counter will be changed to that given by the variable field expression, but the

BIE- GO0 SIERIES

II1-42

loading will continue to be consecutive. This provides a means of assembling code in one area
of memory while its execution will occur at some other area of memory.

All symbols appearing in the variable field of this pseudo-operation must have been previously
defined.

The sole purpose of this pseudo-operation is to allow program coding to be loaded in one section
of memory and then to be subsequently moved to another section for execution.

Symbol-Defining Pseudo-Operations

Increased facility in program writing frequently can be realized by the ability to define symbols
to the Assembler by means other than their appearance in the location field of an instruction or by
using a generative pseudo-operation. Such a symbol definition capability is used for (1) equating
symbols, or (2) defining parameters used frequently by the program but which are subject to
change. The symbol-defining pseudo-operations serve these and other purposes.

It should be noted that they do not generate any machine instructions or data but are available
merely for the convenience of the programmer.

EQU (Equal To)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
(]
12 6(718 _ 14[135)16 32

ymbol An_expression in the variable field

The purpose of the EQU pseudo-operation is to define the symbol in the location field to have the
value of the expressionappearing in the variable field. The symbol in the location field will assume

the same mode as that of the expression in the variable field, that is, absolute or relocatable.
(See Relocatable and Absolute Expressions)

All symbols appearing in the variable field must have been previously defined and must fall under
the same location counter. SYMDEF or SYMREF symbols cannot appear in the variable field.

If the asterisk (*) appears in the variable field denoting the current location counter value, it will
be given the value of the next sequential location not yet assigned by the Assembler with respect
to the unique location counter presently in effect.

GlE-600 SERIES

111-43

FEQU (Special FORTRAN Equivalence)

Symbol FEQU : A symbol in the variable field

The purpose of the FEQU pseudo-operation is to equate the symbol in the location field with the
symbol in the variable field, the latter of which is as vet undefined. It was initially implemented
to allow the FORTRAN IV compiler of the GE-600 Series software to generate more efficient code
in certain cases where the value of a certain symbol was not immediately known. It was known
that it would be defined before the compilation was complete, and as such, offers one advantage
over the EQU pseudo-operations though it does carry restrictions as well,

The most stringent restriction is that the variable field may not contain an expression. Secondly,
the symbol in the variable field may not subsequently appear in either field of another FEQU
pseudo-operation. A third restriction is that if HEAD characters are in effect, both symbols
(or neither symbol) must be able to be headed.

As implemented, both symbols are essentially held in abeyance until the variable field symbol is
defined. At that point, both symbols take on the same value and characteristics, and are available
for normal functions.

It should be noted that the symbol in the variable field does not have to be undefined. Nor does it
have to be a symbol. It could be a number, or the current location counter value symbol (*).
However, in these cases FEQU acts just as EQU, and the location symbol will be immediately
defined with the indicated value,

BOOL (Boolean)

LOCATION |E| OPERATION ADDRESS, MODIFIER

32

The BOOL pseudo-operation defines a constant of 18 bits and is similar to EQU except that the
evaluation of the expression in the variable ficld is done assuming Boolean operators. By
delinition, all integral values are assumed in octal and are considered to be in error otherwise.
The symbol in the location field will always be absolute, and the presence of any expression other
than anabsolute one in the variable field will be considered an error. (See Relocatable and Absolute
Expressions.)

GlE-GO0 SERIES

IT1 - 44

All symbols appearing in the variable field must have been previously defined.

SET (Symbol Redefinition)

LOCATION OPERATION ADDRESS, MODIFIER COMMENTS

~N O\m

12 6718 14)15016 32

ymbol| |SET An expression in the variable field

The SET pseudo-operation permits the redefinition of a symbol previously defined to the Assembler.

This ability is useful in Macro expansions where it may be undesirable to use created symbols
(CRSM).

All symbols entered in the variable field must have been previously defined and must fall under
the same location counter. SYMDEF or SYMREF symbols cannot be used in the variable field.

The symbol in the location field is given the value of the expression in the variable field. The
SET pseudo-operation may not be used to define or redefine a relocatable symbol. (See Re-
locatable and Absolute Expressions.)

When the symbol occurring in the location field has been previously defined by a means other
than a previous SET, the current SET, pseudo-operation will be ignored and flagged as an error.

The last value assigned to a symbol by SET affects only subsequent in-line coding instructions
using the redefined symbol.

MIN (Minimum)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
0
12 sl7l8 14/1516 32
Symbol| { MIN A sequence of expressions, separated by

commas, in the variable field -- all of the

same type; that is, relocatable or absolute

The MIN pseudo-operation defines the symbol in the location field as having the minimum value

among the various values of all relocatable or all absolute expressions contained in the variable
field.

All symbols appearing in the variable field must have been previously defined and must fall under
the same location counter. SYMDEF or SYMREF symbols cannot be used in the variable field.

GE-GO0 SERIES

II1-45

MAX (Maximum)

The MAX pseudo-operation is coded in the same format as MIN above. It defines the symbol in

the location field as having the maximum value of the various expressions contained in the variable
field.

All symbols appearing in the variable field must have been previously defined and must fall under
the same location counter. SYMDEF or SYMREF symbols cannot be used in the variable field.

SYMDEF (Symbol Definition)

Nl

LOCATION OPERATION ADDRESS, MODIFIER COMMENTS
o
12 6718 _14)1s1e 32
Blanks| |SYMDEF | Symbols separated by commas in the variable
field

The SYMDEF pseudo-operation is used to identify symbols which appear in the location field of
a subroutine when these symbols are referred tofrom outside the subroutine (by SYMREF). Also,
the programmer must provide a unique SYMDEF foruse by the Loader to denote each subprogram
entry point for the loading operations. The symbols used in the variable field of a SYMDEF instruc-
tion will be called SYMDEF symbols. Multiply defined SYMDEF symbols cannot occur since the

Assembler ignores the current definition if it finds the same symbol previously entered in the
SYMDEF table.

The appearance of a symbol in the variable field of a SYMDEF instruction indicates that:

1. The symbol must appear in the location field of only one of the instructions within the
subroutine in which SYMDEF occurs.

2. The Assembler will place each such SYMDEF symbol along with its relative address
in the preface card.

3. At load time, the Loader will form a table of SYMDEF symbols to be used for linkage
with SYMREF symbols.

It is possible to classify SYMDEF symbols as primary and secondary. A secondary SYMDEF
symbol is denoted by a minus sign in front of the symbol. The Loader will provide linkage for a
secondary SYMDEF symbol only after linkage has been required to a primary SYMDEF within
the same subprogram. The use of secondary SYMDEF symbols is intended for programmers who
are specifically concerned with using the system subroutine library and generating routines for
accessing the library. Secondary SYMDEF symbols are normally thought of as secondary entries
to subroutines contained within a subprogram library package that will be used as an entire package,
(The use of primary and secondary SYMDEF symbols is further described in the General Loader- -
GELOAD~-manual.)

Bl H00 SERIES "

III-46

SYMREF (Symbol Reference)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS ?
o
12 61718 141516
Blanks | (SYMREF A sequence of symbols separated by commas

entered in the variable field

.ii;iih..--'

The SYMREF pseudo-operation is used to denote symbols which are used in the variable field
of a subroutine but are defined in a location field external to the subroutine. Symbols used in the

variable

When a

1.

Symbols

field of a SYMREF instruction will be called SYMREF symbols.

symbol appears in the variable field of a SYMREF instruction, the following items apply:

The symbol should occur in the variable field of at least one instruction within the
subroutine.

At assembly time the Assembler will enter the SYMREF symbol in the preface card of the
assembled deck and place a special entry number (page III-85) in the variable fields
of all instructions in the referenced subroutine which contain the symbol.

At load time the Loader will associate the SYMREF symbol with a corresponding SYMDEF

symbol and place the appropriate address in all instructions that have been given the
special entry number.

appearing in the variable field of a SYMREF instruction must not appear in the location

field of any instruction within the subroutine in which SYMREF is used.

ATAN2
ATANS

ATAN

GlE-600 SERIES

EXAMPLE OF SYMDEF AND SYMREF PSEUDO-OPERATIONS

Base Program or Subprogram Referencing Subroutine
SYMDEF ATAN,ATAN2 SYMREF ATAN,ATAN2
STC2 INDIC .

SAVE 0,1
SZN INDIC .
TZE START POLYX FLD X
STZ INDIC TSX1 ATAN
TRA ATANS .
: TSX 1 ATAN2

111 - 47

NULL (Null)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS \
0
12 sl7l8 141516 32
Symbolf | NULL The variable field is not interpreted.

The NULL pseudo-operation acts as an NOP machine instruction to the Assembler in that no

actual words are assembled. A symbol on a NULL will be defined as current value of the location
counter.

EVEN (Force Location Counter Even)

Symbol EVEN The variable field is not interpreted
or
blanks

v S

The EVEN pseudo-operation accomplishes the same end result as the E in column 7. If the
location counter is odd, a NOP is generated, thereby making it even. If there is a symbol in
the location field it will be defined at the even address.

ODD (Force Location Counter Odd)

Symbol ODD The variable field is not interpreted
or

blanks
S ™™ e

The ODD pseudo-operation acts as if an O has been punched in column 7. If the location counter
is even, a NOP is generated, thereby making it odd. If there is a symbol in the location field it
will be defined at the odd address.

GlE-600 SERIES

II1-48

EIGHT (Force Location Counter to a Multiple of 8)

> AT)17@15

Symbol EIGHT f The variable field is not interpreted
' or : s
blanks o

The EIGHT pseudo-operation behaves as an 8 punched in column 7. If the location counter is not
a multiple of 8, a TRA *in is generated, where the value of *+n is the next location which is a
multiple of 8, and the location counter is bumped by n. If there is a symbol in the location field
it will be defined at the mod-8 address.

NOTE: In each of the 3 pseudo-operations, (EVEN, ODD, and EIGHT) the origin of the location
counter will also be forced to a related address. For EVEN and ODD, it will be forced even, and
for EIGHT, it will be forced to a multiple of eight.

Data Generating Pseudo-Operations

The Assembler language provides four pseudo-operations which can be used to generate data
in the program at the time of assembly. These are BCI, OCT, DEC, and VFD. The first three,
BCI, OCT, and DEC, are word-oriented while VFD is bit-oriented. There exists a fifth pseudo-
operation, DUP, which in itself does not generate data, but through its repeat capability causes
symbolic instruction and pseudo-operations to be iterated.

OCT (Octal)

Symbol OCT One or more subfields separated by commas
or appearing in the variable field, each one con-

blanks

S—

taining a signed or unsigned octal integer.

The OCT pseudo-operation is used to introduce data in octal integer notation into an assembled
program. The OCT pseudo-operation causes the Assembler to generate n locations of OCT
data where the variable field contains n subfields (n-1 commas). Consecutive commas in the
variable field cause the generation of a zero data word, as does a comma followed by a terminal
blank. Up to 12 octal digits plus the leading sign may make up the octal number.

The OCT configuration is considered true and will not be complemented on negatively signed
numbers. The sign applies only to bit 0. All assembly program numbers are right-justified,
retaining the integer form.

GlE-600 SERIES

1I1-49

EXAMPLE OF OCT PSEUDO-OPERATION

OCT 1,-4,7701,+3,,-77731,04

If the current location counter were set at 506, the above would be printed out as follows (less the
column headings):

Location Contents _Relocation_

000506 060000000001 000 OCT 1,-4,7701, +3,, -77731, 04
000507 400000000004 000

000510 000000007701 000

000511 000000000003 000

000512 000000000000 000

000513 400000077731 000

000514 000000000004 000

DEC (Decimal)

Symbol DEC One or more subfields in the variable field,
or “ separated by commas, each containing a decimal
blanks entry,

™
B RS

The Assembler language provides four types of decimal information which the programmer may
specify for conversion to binary data to be assembled. The various types are uniquely defined by
the syntax of the individual subfields of the DEC pseudo-operation. The basic types are single-
precision, fixed-point numbers; single-precision, floating-point numbers; double-precision fixed-
point numbers; and double-precision floating-point numbers. All fixed-point numbers are
right-justified in the assembly binary words: floating-point numbers are left-justified to bit position
eight with the binary point between positions0and 1 of the mantissa. (The rules for forming these
numbers are described under Decimal Literals, page III-12.)

EXAMPLES OF SINGLE-PRECISION DEC PSEUDO-OPERATION

GAMMA DEC 3,-1,6.,.2E1,1B27,1.2E1B32,-4

The above would print out the following data words (without column headings), assuming that
GAMMA is located at 1041.

i GO0 SRS — -

II1-50

Location Contents Relocation
001041 000000000003 000 GAMMA DEC 3,-1,6.,.2E1,1B27,
1.2E1B32, -4
001042 NN 000
001043 006600000000 000
001044 004400000000 000
001045 000000000400 000
001046 000000000140 000
001047 7171774 000

The presence of the decimal point and/or the E scale factor implies floating -point, while the

added B (binary scale) implies fixed-point binary numbers. The absence of all of these elements

implies integers. Several more examples follow (see decimal literals for further explanation):
DEC -1B17,-1.,1000

With the location counter at 1050, the above would generate:

Location Contents Relocation
001050 7771777000000 000 DEC -1B17,-1.,1000
001051 001000000000 000
001052 000000001750 000

EXAMPLE OF DOUBLE-PRECISION DEC PSEUDO-OPERATION

BETA DEC .3D0,0.D0,1.2D1B68,1D-1

The location counter is at the address BETA (1060); the above subfields generate the following
double-words:

Location Contents Relocation
001060 776463146314 000 BETA DEC .3D0,0.DO,
1.2D1B68,1D-1

001061 631463146314 000

001062 400000000000 000

001063 000000000000 000

001064 000000000000 000

001065 000000000140 000

GlE-600 SERIES

III-51

Location Contents Relocation
001066 772631463146 000
001067 314631463146 000

BCI (Binary Coded Decimal Information)

LOCATION ;lopsnnm ADDRESS, MODIFIER COMMENTS
(o
12 6l7ls 14)15{16 32
Symbol |BCI Two subfields in the variable field; a count
or L subfield and a data subfield
blanks| |
N~

The BCI pseudo-operation is used by the programmer to enter binary-coded decimal (BCD)
character information into a program.

The first subfield is numeric and contains a count that determines the length of the data subfield.
The count specifies the number of 6-character machine words to be generated; thus, if the count
field contains n, then the data subfield contains 6n characters of data. The maximum value which
n can be is 9. The minimum value for n is 0. If n is 0, no words will be generated.

The second subfield contains the BCD characters, six per machine word.

EXAMPLE OF BCI PSEUDO-OPERA TION

BETA BCI 3,NO ERROR CONDITION

Again assume the location counter set at 506 (location of BETA); the above would print out
(less column headings):

Location Contents Relocation
000506 454620255151 000 BETA BCI 3, NO ERROR CONDITION
000507 465120234645 000
000510 243163314645 000

GlE-600 SERIES

II1-52

VFD (Variable Field Definition)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
0
12 6lzls 14)1516
Symbol| |VFD One or more subfields in the variable field
pr separated by commas.
blanks %

B il

The VFD pseudo-operation is used for generation of data where it is essential to define the data
word in terms of individual bits. It is used to specify by bit count certain information to be
packed into words.

In considering the definition of a subfield, it is understood that the unit of information is a single
bit (in contrast with the unit of information in the BCI pseudo-operation which is six bits). Each
VFD subfield is one of three types: an algebraic expression, a Boolean expression, or alpha-
numeric. Each subfield contains a conversion type indicator and a bit count, the maximum value
of which is 36. The bit count is an unsigned integer which defines the length of the subfield:
it is separated from the data subfield by a slash (/). 1f the bit count is immediately preceded
by an O or H, the variable-length data subfield is either Boolean or alphanumeric, respectively.
In the absence of both the type indicators, O and H, the data subfield is an algebraic field. A
Boolean subfield contains an expression that is evaluated using the Boolean operators (*,/, +,-).

The data subfield is evaluated according to its form: algebraic, Boolean, or alphanumeric. A
36-bit field results. The low-order n bits of the algebraic or Boolean expression determine
the resultant field value; whereas for the alphanumeric subfield the high-order n bits are used.

If the required subfields cannot be contained on one card, they may be continued by the use of the
ETC pseudo-operation. This is done by terminating the variable field of the VFD pseudo-operation
with a comma. The next subfield is then given as the beginning expression in the variable field of
an ETC card. If necessary, subsequent subfields may be continued onto following ETC cards in

the same manner. The scanning of the variable field is terminated upon encountering the first
blank character.

The VFD may generate more than one machine word; if the sum of the bit counts is not a multiple
of a discrete machine word, the last partial string of bits will be left-justified and the word
completed with zeros.

EXAMPLES OF VFD PSEUDO-OPERATION

Assume one would like to have the address ALPHA packed in the first 18 bits of a word, decimal 3
in the next 6 bits, the literal letter B in the next 6 bits, and an octal 77 in the last 6 bits. One
could easily define it as follows:

VFD 18/ALPHA,6/3,H6/B,06/77

GE-600 SERIES

II1-53

With the location counter at 1053 and the location 7318 assigned for ALPHA, this would print out
(without column headings):

Location Contents Relocation

001053 000731032277 000 VID 18/ALPHA,6/3,H6/B,06/717

NOTE: Relocation digits 000 refer to binary code data for A, BC, and DE of the relocation
scheme. (Page III- 84 and following of this chapter.)

If ALPHA had been a program relocatable element, the relocation bits would have been 010; that
is, the relocation scheme would have specified the left half of the word as containing a relocatable
address. The relocation is only assigned if the programmer specifies a field width of 18 bits
and has it left- or right-justified; in all other cases the fields are considered absolute. The
total number of bits under a VFD need not be a multiple of full words nor is the total field (sum

of all subfields) restricted to one word. The total field width, however, for a single subfield is
36 bits.

Consider a program situation where one wishes to generate a three-word identifier for a table.
Assume n is the word length of the table and is equal to 12. You wish to place twice the length
of the table in the first 12 bits, the name of the table in the next 60 bits, the location of the table
{(where TABLE is a program relocatable symbol equal to 23518) in the next 18 bits, zero in the
next 8 bits, and -1 in the next 6 bits--all in a three-word key.

With the location counter at 1054,
VFD 12/2*12 H36/PRESSU,H24/RE,18/TABLE,8/,6/-1

will generate

Location Contents Relocation
001054 003047512562 000 VFD 12/2*12,H36/PRESSU,H24/RE,
18/TABLE,8/,6/-1
001055 626451252020 000
001056 002351001760 010

where 010 specifies the relocatability of TABLE.

GE-GO0 SERIES

I1-54

DUP (Duplicate Cards)

LOCATION [Ef OPERATION ADDRESS, MODIFIER COMMENTS 1‘
o
12 sl7 14]1sl16 2
Symbol ﬁ)UP Two subfields in the variable field, separated
or by a comma
blanks

—mm——t—,_

The DUP pseudo-operation provides the programmer with an easy means of generating tables and/
or data. It causes the Assembler to duplicate a sequence (range) of instructions or pseudo-
operations a specified number of times.

The first subfield in the variable field is an absolute expression which defines the count. The
value of the count field specifies the number of cards, following the DUP pseudo-operation,
that are included in the group to be duplicated. The value in the count field must be a decimal
integer less than or equal to ten.

The second subfield of the pseudo-operation is an absolute expression which specifies the number
of iterations, The value in the iteration field specifies the number of times the group of cards,
following the DUP pseudo-operation, is to be duplicated. This value can be any positive integer

less than 218_5 Ty groups of duplicated cardsappear in the assembled listing immediately
behind the original group. ’

If either the count field or the iterationfield contains 0 (zero) or is null, the DUP pseudo-operation
will be ignored.

If a symbol appears in the location field of the pseudo-operation,it is given the address of the
next location to be assigned by the Assembler.

If an odd/even address is specified for an instruction within the range of a DUP pseudo-operation,
the instruction will be placed in odd/even address and a filler used when needed. The filler will
be an NOP instruction.

All symbols appearing in the variable field of the DUP pseudo-operation must have been previously
defined. Any symbols appearing in the location field of the instructions being duplicated are defined
only on the first iteration, thus avoiding multiply-defined symbols. SET would of course be the
exception to this rule.

The only instructions or pseudo-operations which may notappear in the range of a DUP instruction
are END, MACRO, and DUP. ETC may not appear as the first card after the range of a DUP.

GE-6O0 SERIES

II1-55

Storage Allocation Pseudo-QOperations

These pseudo-operations are used to reserve specified core memory storage areas within the
coding sequence of a program for use as storage areas or work areas.

BSS (Block Started by Symbol)

LOCATION || OPERATION ADDRESS, MODIFIER COMMENTS 1
6]
1.2 6lz7ls 14]1516 32
Symbol! | BSS A permissible expression in the variable
or field defines the amount of storage to be /
blanks reserved.
-

The BSS pseudo-operation is used by the programmer to reserve an area of memory within his
assembled program for working and for data storage. The variable field contains an expression
that specifies the number of locations the Assembler must reserve in the program.

If a symbol is entered in the location field, it is assigned the value of the first location in the
block of reserved storage. If the expression in the variable field contains symbols, they must

have been previously defined and must yield an absolute result. No binary cards are generated
by this pseudo-operation.

BFS (Block Followed by Symbol)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
0
12 sl7ls 141516 32
Symboll [BFS A permissible expression in the variable
or field defines the amount of storage to be
blanks reserved
R T E—— /_

The BFS pseudo-operation is identical to BSS with one exception. If a symbol appears in the

location field, it is assigned the value of the first location after the block of reserved storage
has been assigned.

GE-600 SERIES

II1-56

BLOCK (Block Common)

LOCATION |Ef OPERATION ADDRESS, MODIFIER COMMENTS }
(o]
12 6 F 14)15016 32
Blanks | BLOCK A symbol in the variable field
hant

The purpose of the BLOCK pseudo-operation is to specify that program data following the BLOCK
entry is to be assembled in the LABELED COMMON region of the user program under the symbol
appearing in the variable field. BLOCK is, in effect, another location counter external to the
text of the program.

The symbol in the variable field specifies the label of the COMMON area to be assembled. If
the variable field is left blank, the normal FORTRAN BLANK COMMON is specified; and data
following the BLOCK pseudo-operation will be assembled relative to the unlabeled (BLANK
COMMON) memory area of the user program. It is not possible to assemble data or instructions
into BLANK COMMON. Storage labeling and reservation is all that is permitted.

The pseudo-operations which take the program out of BLOCK mode and into some other mode are:

1. BLOCK (for some other LABELED COMMON)

2. USE ’

3. ORG/LOC, where the value of the expression is relocatable
4. END

It should be noted that BLOCK does not cause the Assembler to make the current USE location
counter PREVIOUS. As such, a USE PREVIOUS following a BLOCK will cause the location
counter which was in effect prior to the last USE to be invoked.

LIT (Literal Pool Origin)

LOCATION ELOPERATION ADDRESS, MODIFIER COMMENTS
o

12 6 14115016

Symbol {LIT Column 16 must be blank

or

blanks

| oeeeet

v s

GE-600 SERIES

I11-57

The LIT pseudo-operation causes the Assembler topunchand print out all the previously developed
literals. If the LIT instruction occurs in the middle of the program, the literals up to that point
are output and printed out starting with the first available location after LIT; the literal pool is
reinitialized as if the assembly had just begun.

If there are literals remaining in the pool when the END card is encountered, the origin of the
literal pool will be one location past the final word defined by the program. The maximum number
of LIT pseudo-operations that can occur in a program is 63.

Conditional Pseudo-Operations

The pseudo-operations, INE, IFE, IFL, and IFG which follow are especially useful within MACRO
prototypes to gain additional flexibility in variable-length or conditional expansion of the MACRO
prototype. Their use, however, is not limited to MACROS: they can be employed elsewhere in
coding a subprogram to effect conditional assembly of segments of the program.

The programmer is responsible for avoiding noncomparable elements within these pseudo-
operations. In addition, symbols used in the variable field will normally have been previously
defined. On the other hand, one of the primary uses of conditionals is to test whether or not a
symbol has been defined at a given point in an assembly. Consequently, undefined symbols
within a conditional are not flagged in the left margin of the listing. However, if the symbol is
never defined within the assembly, the symbol will be listed as undefined at the end of the listing;
if the symbol is defined later in the assembly, it is not listed as undefined.

INE (If Not Equal)

LOCATION |E| OPERATION ADDRESS, MODIFIER ’ COMMENTS \
6]
12 6l1ls 1415016 32
Blanks| |INE Two or three subfields in the variable field’
g

The INE pseudo-operation provides for conditional assembly of the next n instructions, depending
on the relationship of the first two subfields of the variable field.

The value of the expression in the first subfield is compared to the value of the expression in the
second subfield. If they are not equivalent, the next n cards are assembled, where n is specified
in the third subfield; otherwise, the next ncards are bypassed, resumption beginning at the (n:1)th
card. If the third subfield is not present, n is assumed to be one.

Two types of comparisons are possible in the subfields of the INE pseudo-operation. The first
is a straight numeric comparison after the expression has been evaluated. The second is alpha-
numeric comparison and the relation is the collating sequence. Alphanumeric strings in the
variable field of INE are denoted by placing the subfield within apostrophe marks. If either the
first or second subfield is designated as an alphanumeric string, the other will automatically be
classified as such.

GlE-600 SERIES

II1-58

IFE (If Equal)

LOCATION [E| OPERATION ADDRESS, MODIFIER COMMENTS
o
12 6 7'5 14}1516 32
Blanks| |IFE Two or three subfields in the variable field

\t

The IFE pseudo-operation provides for conditional assembly of the next n cards depending on the
relationship of the first two subfields of the variable field. The next n cards are assembled if
and only if the expression or alphanumeric string in the first subfield is equal to the expression
or alphanumeric string in the second subfield. The n is specified in the third subfield and assumed
to be one if not present. If the compared subfields are not equal, the next n cards are bypassed.

Alphanumeric strings in the variable field of IFE are denoted by placing the subfield within apos-
trophe marks. If either the first or second subfield is designated as an alphanumeric string,
the other will automatically be classified as such.

IFL (If Less Than)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS 1
o
12 6l7 1415016 32
Blanks | |[IFL Two or three subfields in the variable field
J e —— "

The IFL pseudo-operation provides for conditional assembly of the next n cards depending on the
value of the first two subfields of the variable field. The next n cards are assembled if the
expression or alphanumeric string in the first subfield is algebraically less than the expression
or alphanumeric string in the second subfield; otherwise, the next n cards are bypassed. The n
is specified in the third subfield and assumed to be one if not present. Alphanumeric strings in
the variable field of IFL are denoted by placing the subfield within apostrophe marks. If either
the first or second subfield is designated as an alphanumeric string, the other will automatically
be classified as such.

IFG (If Greater Than)

LOCATION [E] OPERATION ADDRESS, MODIFIER COMMENTS }
o
12 6l7]s 141516 2
Blanks| (IFG Two or three subfields in the variable field\

]
(
\

I— _—ﬁ

GlE-600 SERIES

II1-59

The IFG pseudo-operation provides for conditional assembly of the next n cards depending on the
value of the first two subfields of the variable field. The next n cards are assembled if the
expression or alphanumeric string in the first subfield is algebraically greater than the ex-
pression or alphanumeric string in the second subfield; otherwise, the next n cards are by-
passed. Thenis specifiedin the third subfield and assumed to be one if not present. Alphanumeric
strings in the variable field of IFG are denoted by placing the subfield within apostrophe marks.
If either the first or second subfield is designated as an alphanumeric string, the other will
automatically be classified as such.

Special Word Formats

ARG A, M (Argument--Generate Zero Operation Code Computer Word)

LOCATION F{opemmu ADDRESS, MODIFIER COMMENTS
o
12 sl7is 1
Symboll | ARG Two subfields in the variable field
— o *w

The use of ARG in the operation field causes the Assembler to generate a binary word with bit
configuration in the general instruction format. The operation code 000 is placed in the operation
field. The variable field is interpreted in the same manner as a standard machine instruction.

NONOP (Undefined Operation)

When an undefined operation is encountered, NONOP is looked up in the operation table and used
in place of the undefined operation. NONOP is initially set as an error routine, but the programmer
through the use of OPD, OPSYN or MACRO may redefine NONOP to his own purpose. For ex-
ample, NONOP could be redefined by the use of a MACRO to be a MME to GECHEK with a dump
sequence, or it could be equivocated with the ARG pseudo-operation.

ZERO B, C (Generate One Word With Two Specified 18-bit Fields)

LOCATION [E| OPERATION ADDRESS, MODIFIER COMMENTS
o
12 6 ﬂg 14[15he 32
Symbol| | ZERO Two subfields in the variable field
or
blanks

GE-600 SERIES

II1-60

The pseudo-operation ZERO is provided primarily for the definition of values to be stored in
either or both the high- or low-order 18-bit halves of a word. The Assembler will generate
the binary word divided into the two 18-bit halves; bit positions 0-17 and 18-35. The equivalent
binary value of the expression in the first subfield will be in bit positions 0-17. The equivalent
binary value of the expression in the second subfield will be in bit positions 18-35. Literals are
not allowed in the variable field of the ZERO pseudo-operation.

MAXSZ (Maximum Size of Assembly)

OPERATION ADDRESS, MODIFIER COMMENTS

LOCATION %
12 slzls 1415016 2
Blank MAXSZ A decimal number in the variable field

The decimal number represents the programmer’s estimate of the largest number of assembled
instructions and data in his program or subprogram. The variable field number is evaluated,
saved, and printed out at the end of the assembly listing. It can then be compared with the actual
size of the assembly.

MAXSZ is provided as a programmer convenience and can be inserted anywhere in his coding.

Address Tally Pseudo-Operations

The Indirect then Tally (IT) type of address modification in several cases requires special word
formats which are not instructions and do not follow the standard word format. The following
pseudo-operations are for this purpose. (Refer to page III-20 and following.)

° TALLY A, T,C (Tally) Used for ID, DI, SC, and CI type of tally modification, where SC and
CI are for 6 bit characters. The first subfield is the address for the indirect reference, T is
the tally count, and C is the character position (0 <C < 5). When used with the CI modifier the
contents of the tally count subfield (T) is not interpreted.

e TALLYB A T,B (Tally Byte) Used for SC and CI type of tally modification, where 9 bit
bytes (characters) are desired. A and T are the same as for TALLY and B indicates the byte
position (0 < B =< 3).

e TALLYD A,T,D, (Tally and Delta) Used for Add Delta (AD) and Subtract Delta (SD) modifi-
cation. A is the address, T the tally, and D the delta of incrementing.

¢ TALLYC A, T,mod (Tally and Continue) Used for Address, Tally, and Continue. A is the
address, T the tally count, and mod the address modification as specified under normal instructions.

BlE-6O0 SERIES

II-61

Repeat Instruction Coding Formats

The machine instructions Repeat (RPT), Repeat Double (RPD), and Repeat Link (RPL) use special
formats and have special tally, terminate repeat, and other conditions associated with them.

(See page II-125 and following.,) The Assembler coding formats for the several RPT, RPD, and
RPL options follow.

® RPT N,I.kl1,k2,..... ,kj The command generated by the Assembler from this format will
cause the instruction immediately following the command tobe iterated N times and the increment
value for each iteration set to I. The range for N is 0-255. If N=0, the instruction will be iterated
256 times. The fields kl1,k2,..... ,kj may or may not be present. They are conditions for termi-

nation. These fields may contain the allowable codes of TOV, TNC, TRC, TMI, TPL,TZE, and
TNZ.

It is also possible to use an octal number rather than the special symbols to denote termination
conditions. Thus if field k1 is found to be numeric, it will be interpreted as octal; the low-order

seven bits will be ORed into positions 11-17 of the instruction. The variable field scan will be
terminated with the octal field.

e RPTX ,I This instruction behaves just as the RPT instruction with the exception that N and

the conditions of termination will be found in index register zero instead of imbedded in the in-
struction.

° RPD N,Lkl,k2...... ,kj The command generated by the Assembler from this format will
cause the two instructions immediately following the RPD instruction to be iterated N times and

the increment value for each iteration set to I. The increment I will apply to both instructions
being repeated.

The variables ki,..... ,Kj are identical to those explained in the RPT instruction. Since the double
repeat must fall in an odd location, the Assembler will force this condition and use an NOP
instruction for a filler when needed.

e RPDX ,I This instruction behaves just as the RPD instruction with the exception that N and

the conditions of termination will be found in index register zero instead of imbedded in the
instruction.

® RPDA N,I.ki,k2,..... ,kji This is the same asthe RPD instruction except that only the address
of the first instruction following the RPDA instruction will be incremented on each iteration by I.

e RPDB N, Lkl,k2,...... ,kj This is the same asthe RPD instruction except that only the address
of the second instruction following the RPDB instruction will be incremented by I on each iteration.

® RPL N,kl1,k2...... ,ki This format will cause the instruction immediately following it to be
repeated N times or until one of the conditions specified in ki1,..... ,Kj are satisfied. The relation
of ki,..... ,kj is the same as in RPT. The address effectively used by the repeated instruction

is the linked address (described on page I1-129 and following).

GlE-600 SERIES

II1-62

e RPLX This instruction behaves just as the RPL instruction except that N and conditions of
termination will be found in index register zero instead of imbedded in the instruction.

MACRO OPERATIONS
Introduction

Programming applications frequently involve (1) the coding of a repeated pattern of instructions
that within themselves contain variable entries at eachiteration of the pattern and (2) basic coding
patterns subject to conditional assembly at each occurrence. The macro operation gives the
programmer a shorthand notation for handling (1) and (2) through the use of a special type of
pseudo-operation referred to in the GE-625/635 Macro Assembler as a MACRO. Having once
determined the iterated pattern, the programmer can, within the MACRO, designate selectable
fields of any instruction of the patternas variable. Thereafter, by coding a single MACRO instruc-
tion, he can use the entire pattern as many times as needed, substituting different parameters
for the selected subfields on each use.

When he defines the iterated pattern, the programmer gives it a name, and this name then
becomes the operation code of the MACRO instruction by which he subsequently uses the macro
operation.

As a generative operation, the macrooperation causesn card images (where n is normally greater
than one) to be generated; these may have substitutable arguments. The MACRO is known as the
prototype or skeleton, and the card images that may be defined are relatively unrestricted as to
type.

They can be:

1. Any Processor instruction
2. Most Assembler pseudo-operations
3. Any previously defined macro operation

Card images of these types are subject to the same conditions and restrictions when generated by
the macro processor as though they had been produced directly by the programmer as in-line
coding.

To use the MACRO prototype, once named, the programmer enters the macro operation code in
the operation field and arguments in the variable field of the MACRO instruction. (The arguments
comprise variable field subfields and refer directly to the argument pointers specified in the
fields of the card images of the prototype.) By suitably selecting the arguments in relation to
their use in the prototype, the programmer causes the Assembler to produce in-line coding vari-
ations of the n card images defined within the prototype.

The effect of a macro operation is the same as an open subroutine in that it produces in-line
code to perform a predefined function. The in-line code is inserted in the normal flow of the
program so that the generated instructions are executed in-line with the rest of the program
each time the macro operation is used.

GE-600 SERIES

II-63

An important feature in specifying a prototype is the use of macro operations within a given pro-
totype. The Assembler processes such “nested” macro operations at expansion time only. The
nesting of one macro definition within another prototype is not permitted. If macro operation codes
are arguments, they must be used in the operation field for recognition. Thus, the MACRO must
be defined before its appearance as an argument; that is, the prototype must be available to the
Assembler before encountering a demand for its usage.

Definition of the Prototype

The definition of a MACRO prototype is made up of three parts:

1. Creation of a heading card that assigns the prototype a name

2. Generation of the prototype body of n card images with their substitutable arguments
3. Creation of a prototype termination card

These parts are described in the following three subparagraphs.

MACRO (MACRO Identification)

LOCATION E| OPERATION ADDRESS, MODIFIER o COMMENTS ?
o
12 6l7ls 14}1516 2
Symbolj MACRO Blanks in the variable field

Nve

The MACRO pseudo-operation is used to define a macro operation by symbolic name. The
symbol in the location field conforms to standard symbol formation rules and defines the name
of a MACRO whose prototype is given on the next n lines. (The prototype definition continues
until the Assembler encounters the proper ENDM pseudo-operation.) The name of the MACRO
is a required entry. If the symbol is identical to an operation code already in the table, then
the macro operation will be used as a new definition for that operation code. It is entered in the

Assembler operation table with a pointer to its associated prototype that is entered in the MACRO
skeleton table.

ENDM (End MACRO)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
0
12 sl7is 141516 32
Blanks| [ENDM A symbol in the variable field

GlE-6O0 SERIES

I11-64

The symbol in the variable field is the symbolic name of the MACRO instruction as defined in the
location field of the corresponding MACRO heading card. Every MACRO prototype must contain
both the terminal ENDM pseudo-operation and the MACRO pseudo-operation.

Thus, every prototype will have the form

Heading card (OPNAME MACRO
el

Prototype body

.

Terminal card { ENDM OPNAME

where OPNAME represents the prototype name that is placed in the Assembler operation table.

° Prototype Body. The prototype body contains a sequence of standard source-card images

(of the types listed earlier) that otherwise would be repeated frequently in the source program.
Thus, for example, if the iterated coding pattern

LOCATION |E| OPERATION ADDRESS, MODIFIER - COMMENTS
o

12 6l7l8 141516 32
LDA 5,DL
LDQ 13, DL
CWL ALPHA 2
TZE FIRST
LDA U
LDQ A"
CWL BETA, 4
TZE SCND

i LDA WX
LDQ Y+Z
CWL GAMMA
TZE NEXT1
~

GEE-600 SERIES

II1-65

appeared in a subprogram, it could be represented by the following prototype body (preceded by
the required prototype name):

LOCATION |E} OPERATION ADDRESS, MODIFIER COMMENTS
0
12 sl7ls 1411516 32
CMPAR| IMACRO MACRO prototype with substitutable
LDA #1 arguments in the variable field
LDQ #2
CwWL #3
TZE #4
ENDM CMPAR
R T

Then the previous coding examples could be represented by the macro operation CMPAR as
follows:

CMPAR (5,DL),(13,DL), (ALPHA,2), FIRST
CMPAR U,V,(BETA,4),SCND
CMPAR W+X,Y+Z,GAMMA, NEXT1

The Assembler recognizes substitutable argumentstby the presence of the number-sign identifer
(#). Having sensed this identifier, it examines the next one or two digits. (Sixty-three is the
maximum number of arguments usable in a single prototype.)

MACRO prototype arguments can appear in the location field, in the operation field, in the
variable field, and coincidentally in combinations of these fields within a single card image.
Substitutions that can be made in these fields are:

1. Location field--any permissible location symbol (see comments below)

2. Operation field--all machine instructions, all pseudo-operations (except the MACRO
pseudo-operation) and previously defined macro operations

3. Variable field--any allowable expression followed by an admissible modifier tag and
separated from the expression by a delimiting comma.,

In general, anything appearing to the right of the first blank in the variable field will not be copied
into the generated card image, For example, a substitutable argument appearing in the comments
field of a card image--that is, separated from the variable field by one or more blanks--will not
be interpreted by the Assembler (except in the case of the BCI, REM, TTL, and TTLS pseudo-
operations). This means that only pertinent information in the location, operation, and variable
fields is recognized, that internal blanks are not allowed in these fields, and that the first blank
in these fields causes field termination.

GlE-600 SERIES

I11-66

When spocifying o symboa in 2 doeating foid of s insienction wvithin o oototype 2 L oprinanoy
musi e aware tha! this MACRO can be used only ouce since on the second use the sanie »ylubol
will be redefined, causing a multiply-defined symbol. Consequently, the use of location symbols
within the prototype is discouraged. Alternatively, for cases where repeated use of a prototype
is necessary, two techniques are available: (1) use of Created Symbols and (2) placement of
substitutable argument in the location field and use of a unique symbol in the argument of the
macro operation each time the prototype is used. These techniques are described under Using
a MACRO operation, below.

The location field, operation field, and variable field may contain text and arguments which can
be concatenated (linked together) by simply entering the substitutable argument (for example,
AB#3) directly in the text with no blanks or special symbols preceding or following the entry.
Concatenation is especially useful in the operation field and in the partial subfields of the variable
field. (Refer to the discussion of BCI, REM, TTL, and TTLS immediately following.) As an
example of the first use, consider a machine instruction such as LD(R) where R can assume the
designators A, Q, AQ, and X0-X7,

The prototype NAME

NAME MACRO

contains a partial operation field argument; and when the in-line coding is generated, LD#2
becomes LDA, LDQ, etc., as designated by the argument used in the macro operation.

The BCI, REM, TTL, and TTLS pseudo-operations used within the prototype are scanned in full
for substitutable arguments, The variable field of these pseudo-operations can contain blanks
and argument pointers, The following illustrates a typical use:

ALPHA MACRO

NOTE#1 REM IGNORED #2bERRORSHOONDH#3

An asterisk (*) type comment card cannot appear in a MACRO prototype.

Using a MACRO Operation

Use of a macro operation can be divided into two basic parts; definition of the prototype and
writing the macro operation. The first part has been described on the preceding pages; writing
the macro operation to call upon the prototype is the process of using the MACRO and is des-
cribed in the following paragraphs,

GE-600 SERIES

1I1-67

The macro operation card is made up of two basic fields; the operation field that contains the
name of the prototype being referenced and the variable field that contains subfield arguments
relating to the argument pointers of the prototype on a sequential, one-to-one basis. For example,
the defined prototype CMPAR, mentioned earlier, could be called for expansion by the MACRO
instruction

CMPAR U,V,(BETA,4),SCND

where the variable field arguments, separated by commas and taken left-to-right, correspond
with the prototype pointers #1 through #4. These arguments are then substituted in their cor-
responding positions of the prototype to produce a sequence of instructions using these arguments
in the assigned location, operation, and variable fields of the prototype body. (The above MACRO
instruction expands to the coding shown on page III-65.)

The maximum number of MACRO call arguments is 63; arguments greater than 63 are treated
modulo 64. For example, the 70th argument is the same as the 6th argument and would be so
recognized by the Assembler, Each such argument can be a literal, a symbol, or an expression
(delimited by commas) that conforms to the restrictions imposed upon the field of the machine
instruction or pseudo-operation within the prototype where the argument will be inserted.

The following conditions and restrictions apply to the expansion of MACROs:

1. Anything appearing in the location field of a prototype card image, whether text or a
substitutable argument, causes generation to begin in column 1 for that text or argument,

2. Location field text generated from an argument pointer (in a prototype location field)
so as to produce a resultant field extending beyond column 8 causes the operation field
to begin in the next position after the generated text. Normally, the operation field
will begin in column 8.

3. Operation field text generated from an argument pointer (in a prototype operation field)
so as to produce a resultant field extending beyond column 16 causes the variable field
to start in the next position after the generated text. Normally, the variable field will
begin in column 16,

4, The variable field may begin after the first blank that terminates the operation field but
not later than column 16 in the absence of the condition in 3 above,

5. No generated card image can have more than 72 characters recorded; that is, the capac-
ity of one card image cannot be exceeded (columns 73-80 are not part of the card image).

6. No argument string of alphanumeric characters can exceed 57 characters.

7. Up to 63 levels of MACRO nesting are permitted.

An argument can also be declared null by the programmer when writing the MACRO instruction;
however, it must be declared explicitly null, Explicitly null arguments of the MACRO instruction
argument list can be specified in either of two ways; by writing the delimiting commas in succes-
sion with no spaces between the delimiters or by terminating the argument list with a comma with
the next normal argument of the list omitted, (Refer to the CRSM description, following.) A
null argument means that no characters will beinserted in the generated card image wherever the
argument is referenced, When a macro operation argument relates to an argument pointer and
the pointer requires the argument to have multiple entries or contains blanks, the corresponding
argument must be enclosed within parentheses with the parenthetical argument set off by the
normal comma delimiters. The parenthetical argument can contain commas as separators.

GiE-600 SERIES

II1-68

Examples of prototype card images that require the use of parentheses in the MACRO call are
pseudo-operations such as IDRP, VFD, BCI, and REM, as well as the variable field of an in-
struction where the address and tag may be one argument,

It is also possible to enclose an argument within brackets, making them subarguments, in which
case blanks are ignored as part of the argument, For example the MACRO call of the MACRO
named ABC can be written as

ABC [a,
ETC 24,
ETC 2+D]

and is equivalent to
ABC (A, 24, 2*D)

even though numerous blanks occur after the arguments A, and 24,. Thus, the Assembler packs
everything it finds within brackets and suppresses all blanks therein. The above manner of writing
the MACRO call permits the programmer additional flexibility in placing one subargument per
card by means of using ETC, the blanks no longer being significant.

It can happen that the argument list of a macro operation extends beyond the capacity of one
card, In this case, the ETC pseudo-operation is used to extend the list on to the next card. In
using ETC, the last argument entry of the macro operation is delimited by a following comma,
and the first entry of the ETC card is the next argument in the list. Within the prototype, as
many ETC cards as required can be used for internal MACROs or VFD pseudo-operations,

Pseudo-Operations Used Within Prototypes

[Need for Prototype Created Symbols. In case of a MACRO prototype in which an argument
pointer is used in the location field, the programmer must specify a new symbol each time the
prototype is called. In addition, for those cases where a nonsubstitutable symbol is used in a
prototype location field, the programmer can use the macro operation only once without in-
curring an Assembler error flag on the second and all subsequent calls to the prototype (mul-
tiply-defined symbol), Primarily to avoid the former task (having to repeatedly define new
symbols on using the macro operation) and to enable repeated use of a prototype with a location
field symbol (nonsubstitutable), the created symbol concept is provided,

e Use of Created Symbols. Created symbols are of the type .xxx. where xxx runs from 001
through 999, thus making possible up to 999 created symbols for an assembly. The periods are
part of the symbol. The Assembler will generate a created symbol only if an argument in the
macro operation is implicitly null; that is, only if the macro operation defines fewer arguments
than given in the related MACRO prototype or if the designator # is used as an argument, Ex-
plicitly null arguments will not cause created symbols to be generated. The example given
clarifies these ideas,

GE-BO0 SERIES

I11-69

Assume a MACRO prototype of the form

NAME MACRO
------- #1, #2
#4 e X
- T —— ALPHA #3
------- #4
TMI #5
ENDM NAME

with five arguments, 1 through 5. The macro operation NAME in the form

NAME A7,,,B

specifies the third and fourth arguments as explicitly null; consequently, no created symbols
would be provided. The expansion of the operation would be

------- AT
------- X
B ee-eee-- ALPHA,
TMI B
The macro operation card
NAME AT,

indicates the third argument is explicitly null, while arguments four and five are implicitly null,
Consequently, created symbols would be provided for arguments four and five but not for three.
This is shown in the expansion of the macro operation as follows:

------- AT

1) § DR X

012, —emeee- ALPHA,
------- .011.
TMI .012,

A created symbol could be requested for argument three simply by omitting the last comma. The
programmer can conveniently change an explicitly null argument to an implicitly null one by
inserting the # designator in an explicitly null position. Thus, for the preceding example

NAME A7, #B

the fourth argument becomes implicitly null and a created symbol will be generated.

GE-600 SERIES

II1-70

CRSM ON/OFF (Created Symbols)

LOCATION |E{ OPERATION ADDRESS, MODIFIER COMMENTS ‘
o
12 sl7l8 14{1516 32
Blanks| [CRSM ON Normal mode

/

o

Created symbols are generated only within MACRO prototypes. They can be generated for
argument pointers in the location, operation, and variable fields of instructions or pseudo-
operations that use symbols, Accordingly, the created symbols pseudo-operation affects only
such coding as is produced by the expansion of MACROs. CRSM ON causes the Assembler to
initiate or resume the creation of symbols; CRSM OFF terminates the symbol creation if CRSM
ON was previously in effect, If the Assembler is already in the specified mode, the pseudo-
operation is ignored, ’

ORGCSM (Origin Created Symbols)

Blanks ORGCSM One expression in the variable field.

V —— e g
——

The variable field is evaluated and becomes the new starting value between the decimal points of
the created symbols.

IDRP (Indefinite Repeat)

ILOCA“ON [E{ OPERATION ADDRESS, MODIFIER - COMMENTS
0
1.2 61718 14)15)16 32
Blanks| |{IDRP #3 An argument number or blanks in the variabl
field, depending on the IDRP of the IDRP pair

The purpose of the IDRP is to provide an iteration capability within the range of the MACRO
prototype by letting the number of grouped variables in an argument pointer determine the
iteration count,

The IDRP pseudo-operation must occur in pairs, thus delimiting the range of the iteration within
the MACRO prototype, The variable field of the first IDRP must contain the argument number
that points to the particular argument used to determine the iteration count and the variables to
be affected. The variable field of the second IDRP must be blank,

At expansion time, the programmer denotes the grouping of the variables (subarguments) of the
iteration by placing them, contained in parentheses, as the nth argument where n was the argument
value contained in the initial IDRP variable field entry.

GE-600 SERIES

nr-71

IDRP is limited to use within the MACRO prototype, and nesting is not permitted. However,
as many disjoint IDRP pairs may occur in one MACRO as the programmer wishes.

For example, given the MACRO skeleton

NAME MACRO
IDRP #2
ADA #2
IDRP
ENDM NAME

the MACRO call (with variables X1, X2, and X3)
A NAME Q+2,(X1,X2,X3),B

would generate

A
ADA X1
ADA X2
ADA X3

In the example, arguments #1 and #3, Q+2, and B respectively, are used in the skeleton ahead
of and after the appearance of the IDRP, range-iteration pair,

DELM (Delete MACRO)

Symbol DELM A symbol in the variable field
or '

. Blanks :

The function of this pseudo-operation is to delete the MACRO named in the variable field from
the MACRO prototype area, and disable its corresponding operation table entry. Through the
use of this pseudo-operation, systems which require many, or large MACRO prototypes, or
which have minimal storage allocation at assembly time, can re-use storage in the prototype
area for redefining or defining new MACROs. Redefinition of a deleted MACRO will not produce
an M multiple defined flag on the assembly listing,

GE-600 SERIES

III-72

Implementation of System MACROs

GMAP has been implemented with the facility for loading a unique set (or sets) of MACROs,
under control of a pseudo-operation, This permits the various language processors to uniquely
identify those standard system MACROs that are required for the assembly of their generated code,

GMAP itself has a set of system MACROSs which it loads as part of its initialization procedures.
This includes FILCB, the GEFRC File Control Block MACRO, SORT, DUAL, and MERGE (cf.
GE-600 Series SORT/MERGE Reference Manual CPB-1005) and the DEBUG Symbol Table
MACROs VTAB and LTAB. This action is dependent on the elected option on the $§ GMAP control
card. The option GMAC/NGMAC instructs GMAP to load or not load its own system MACRO’s
in initializing for assembly. The absence of either option is equivalent to having elected GMAC,

hence the normal user of GMAP does not need to be aware of the fact that GMAPS MACROSs are
optionally loaded.

System MACROs are, by definition, located on the System File on the high speed drum. They
are put there by the System Editor, in System Loadable Format, as a free-standing system pro-
gram, Their catalog name is that which is to be used by GMAP in the loading operation. For
proper implementation, the MASTER option of the System Editor parameters card must be
elected. It may be in absolute or relocatable System Loadable Format,

This implementation technique permits any unit, or functionally related group of users of GMAP
to define and implement a unique set of System MACROs; or on a larger scale, it allows various
GE-600 installations to install local standard sets of MACROs, without changing the Assembler.

PUNM (Punch MACRO Prototypes and Controls

; At . PSR ‘ ‘ LRENL
‘ v HE Mi‘&;‘y:. ’
| Blanks PUNM [The variable field is not examined

|

[! :
Yo
|

This pseudo-operation causes the Assembler, in pass one, to scan the operation table for all
MACROs defined, It then appends their definitions to the end of the prototype table and con-
structs a control word specifying the length of this area and the number of MACROs defined
therein.

At the beginning of pass two, this information is punched onto relocatable binary instruction
cards, along with § OBJECT, preface, and $§ DKEND cards. The primary SYMDEF of this deck
will arbitrarily be .MACR, .

In the normal preparation of System MACROs, it would not be desirable to include the GMAP
System MACROs, For this reason, the assembly of a set of System MACROs should have NGMAC
elected on its $ GMAP card.

GE-600 SERIES

II1-73

LODM (Load System MACROs)

[
!LU(IAHON’ Ty OPERATION COMMENTS

| ADDRESS, MOOIFIER l
, loi l
b 617y . 141516 !

I

' Blanks| \LODM
[.

n -
A symbol in the variable field
C

This pseudo-operation causes the Assembler to issue an MME GECALL for a set of System
MACROs. The name used in the GECALL sequence is the symbol taken from the variable field
of the LODM pseudo-operation. MACROs thus loaded will be appended to (not overlay) the MACRO
prototype table, They will be defined and made available for immediate use., If a MACRO is
redefined by this operation the LODM instruction will be flagged with an M,

Notes and Examples on Defining a Prototype

The examples following show some of the ways in which MACROs can be used.

[Field Substitution

Prototype definition:

ADDTO MACRO
LDA #1
ADA #2
STA #3
ENDM ADDTO
Use:

ADDTO A,(1,DL),B+5

e Concatenation of Text and Arguments

Prototype definition:

INCX MACRO
ADLX#2 #3,DU
INE #1,7%41°
TRA #1
ENDM INCX
Use:
INCX LOCA,4,1
or
INCX *+1,4,1

e Argument in a BCI Pseudo-Operation

Prototype definition:

ERROR MACRO
TSX1 DIAG
ARG #1
BCI 5, ERROR b#1HCONDITIONHIGNORED
ENDM ERROR

GE-600 SERIES

I11-74

Use:
ERROR 5

® MACRO Operation in a Prototype

Prototype definition:

TEST MACRO

LDA #1

CMPA #2

#3 #4

ERROR #5

ENDM TEST

Use:
TEST A,B,TZE,ALPHA,3

e Indefinite Repeat

Prototype definition (for generating a symbol table):

SYMGEN MACRO
IDRP #1
#1 BCI 1,#1
IDRP
ENDM SYMGEN
Use:
SYMGEN (LABEL, TEST,ERROR,MACRO)

® Subroutine Call MACRO

Prototype definition:

DOO MACRO

K SET 0
IDRP #2

K SET K+1
IDRP
TSX1 #1
TRA *+1+K
IDRP #2
ARG #2
IDRP
ENDM DOO

Use:

DOO SRT,(ARG1,ARG2,ARG3)

GE-GO0 SERIES

II1-75

PROGRAM LINKAGE PSEUDO-OPERATIONS

CALL (Call--Subroutines)

LOCATION |E| OPERATION ADDRESS, MODIFIER 7 COMMENTS (
0
1.2 6718 14[1506 32
Symbol| |CALL Subfields in the variable field with }
or contents and delimiters as
blanks described below
) — e ——

The CALL pseudo-operation is used to generate the standard subroutine calling sequence.

The first subfield in the variable field of the instruction is separated from the next n subfields
by a left parenthesis. This subfield contains the symbol which identifies the subroutine being
called. It is possible to modify this symbol by separating the symbol and the modifier with a
comma. (In a Relocatable Assembly the symbol entered in this subfield is treated as if it were
entered in the variable field of a SYMREF instruction.)

The next n subfields are separated from the first subfield by a left parenthesis and from subfield
n+l by a right parenthesis. Thus the next n subfields are contained in parentheses and are sep-
arated from each other by commas, The contents of these subfields are arguments which will be
used in the subroutine being called.

The next m subfields are separated from the previous subfields by a right parenthesis and from
each other by commas, These subfields are used to define locations for error returns from the
subroutine, If no error returns are needed, then m=0.

The last subfield is used to contain an identifier for the instruction. This identifier is used when
a trace of the path of the program is made, The identifier may be an expression contained in
apostrophes. Thus the last subfield is separated from the previous subfields by an apostrophe.
If the last subfield is omitted, the assembly program will provide an identifier.

In the examples following, the calling sequences generated by the pseudo-operation are listed
below the CALL pseudo-operation., For clarification AAAAA defines the location the CALL in-
struction; SUB is the name of the subroutine called; MOD is an address modifier; Al through An
are arguments; E1 through Em define error returns; E.I, is an identifier; and ,E L., defines a
location where error linkage information is stored. The number sequences 1,2,,..,n and 1,2,...,m
designate argument positions only,

AAAAA CALL SUB,MOD(A1,A2......An)ELE2,......... Em’E.I.’
AAAAA TSX1 SUB,MOD

TRA *+2+n+m

ZERO .E.L..E.L

ARG Al

ARG A2

ARG An

TRA Em

TRA E2

TRA EIl

GE-600 SERIES

II1-76

The preceding example of instructions generated by the CALL pseudo-operation was in the
relocatable mode, The following example is in the absolute mode.

AAAAA CALL SUB,MOD(A1,A2,.... An)ELEZ2,..... Em’E.L’
AAAAA TSX1 SUB,MOD

TRA *12+n+m

ZERO 0,E.l

ARG Al

ARG A2

ARG An

TRA Em

TRA E2

TRA E1

If the variable field of the CALL cannot be contained on a single line of the coding sheet, it may
be continued onto succeeding lines by use of the ETC pseudo-operation. (See page I1I-54 or III-68.)
This is done by terminating the variable field of the CALL instruction with a comma (,). The
next subfield is then placed as the first subfield of the ETC pseudo-operation. Subsequent sub-
fields may be continued onto following lines in the same manner.

SAVE (Save--Return Linkage Data)

LOCATION |Ej OPERATION ADDRESS, MODIFIER COMMENTS

0
12 sl7l8 14]1516 32
Symbol ISAVE Blanks or subfields separated by

commas in the variable field--

as described below

The SAVE pseudo-operation is used to produce instructions necessary to save specified index
registers and the contents of the error linkage index register.

The symbol in the location field of the SAVE instruction is used for referencing by the RETURN
instruction. (This symbol is treated by the Assembler as if it had been coded in the variable
field of a SYMDEF instruction when the Assembler is in the relocatable mode,)

The subfields in the variable field, if present, will each contain an integer 0-7. Thus each subfield
specifies one index register to be saved.

When the SAVE variable field is blank, the following coding is generated:

NAME TRA *+2

RET .E.L. .
STI .E.L. .
STX1 .E.L. .

The instructions generated by the SAVE pseudo-operation are listed on the following page. The
symbols iy through i, are integers 0-7. .E.L.. defines the location provided for the contents of
the error linkage register.

&lE-600 SERIES

-1

BBBBB is a symbol that must be present; it is always a primary SYMDEF,

Example one is in the relocatable mode, and example two is in the absolute mode.

EXAMPLE ONE EXAMPLE TWO
BBBBB SAVE iy, ig, ...ip BBBBB SAVE iy, ig, w.ip
BBBBB TRA *124n BBBBB TRA *134n
LDX (i) ** DU ZERO
. LDX(il) ** DU
. LDX(ig) **,DU
LDX (i) **,DU .
RET .E.L..
STI .E.L.. .
STX1 .E.L.. LDX (i) ** DU
STX(,) BBBBB+1 RET BBBBB+1]
STX (i) BBBBB+2 STI BBBBB+1
. STX1 BBBBB+1
STX(i;) BBBBB+2
. STX(iz) BBBBB+3
STX(iy,) BBBBB+n .
STX(i,) BBBBB+n+l

RETURN (Return--From Subroutines)

OPERATION ADDRESS, MODIFIER COMMENTS

LOCATION %
12 67 14)1516 32
ymbolj |RETURN One or two subfields in the
or variable field
blanks
Ry —

The RETURN pseudo-operation is used for exit from a subroutine. The instructions generated
by a RETURN pseudo-operation must make reference to a SAVE instruction within the same sub-
routine, This is done by the first subfield of RETURN. The first subfield in the variable field
must always be present, This subfield must contain a symbol which is defined by its presence
in the location field of a SAVE pseudo-operation,

The second subfield is optional and, if present, specifies the particular error return to be made;
that is, if the second subfield contains the value k, then the return is made to the kth error return.

GlE-600 SERIES

II1-178

In the examples following, the assembled instructions generated by RETURN are listed below the
RETURN instruction, For both examples the group of instructions on the left are generated
when the Assembler is in the relocatable mode, and the instructions on the right when the Assem-
bler is in the absolute mode.

EXAMPLE ONE

RETURN BBBBB

TRA BBBBB+1 } Instruction TRA BBBBB+2 } Instruction
EXAMPLE TWO

RETURN BBBBB,k
LDX1 LE.L.,* LDX1 BBBBB+1,*
SBX1 k,DU Generated SBX1 k,DU Generated
STX1 E.L.. Instructions STX1 BBBBB+1 Instructions
TRA BBBBB+1 TRA BBBBB+2

ERLK (Error Linkage--to Subroutines)

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
o
12 sl7ls 14[15)16 32
Blanks| |ERLK Column 16 must be blank
R ——

The normal operation of the Assembler is to assign a location for error linkage information, as
referenced by .E.L., in the examples of the CALL, SAVE, and RETURN pseudo-operations, How-
ever, if the programmer wishes to specify the location for error linkage information, he can do
so by using ERLK, The appearance of ERLK causes the Assembler to generate two words of the
following form:

.E.L.. ZERO
BCI 1,NAME

These words will be placed in the assembly at the point the Assembler encountered ERLK,
Note that if the programmer has placed all program data under the BLOCK pseudo-operation,
he must use ERLK since in this case automatic error linkage is suppressed.

NAME, as selected by the Assembler, will be the first SYMDEF defined in the routine. This
may have been accomplished explicitly through use of the SYMDEF pseudo-operation, or im-
plicitly through SAVE,

Error linkage will be generated for all relocatable assemblies, except in the case mentioned
above, where all assembling has been relative to BLOCK counters.

NOTE: The symbol .E.L.. may not appear to the right of an EQU pseudo-operation.

GE-600 SERIES

II1-79

SYSTEM (BUILT-IN) SYMBOLS

It is possible to include additional permanently defined system symbols in the Assembler. This
is accomplished by a reassembly of the Macro Assembler and by placing the proper information
in the required tables,

SOURCE PROGRAM INPUT

Activity Definition

The input job stream managed by the Comprehensive Operating Supervisor (GECOS, GEFLOW
module) can comprise assembled object programs, Macro Assembler language source programs,
and FORTRAN or COBOL compiler-language source programs. Such programs of a job are
referred to as activities, A source program input to the Assembler written in the GE-625/635
machine language is an Assembler language input activity, Comments to follow in this section
pertain to this type of activity, as opposed to the others noted above.

The Assembler language activity is composed of the following parts, in order:

1. $ GMAP control card (calls the Assembler into Memory from external storage and
provides Assembler output options; refer to the paragraph following)

2. Text of the subprogram (one instruction per card)
3. END pseudo-operation card (terminates the input subprogram)

The $ GMAP control card is prepared as shown below:

Card Column 1 8 16
Symbolic Example $:GMAP :Option 1, Option 2, ...
Actual Example $ | GMAP | NDECK, LSTOU, NCOMDK

The operand field specifies the system options listed in any random order., When an option, or
its converse, does not appear in the operand field, there is a standard entry which is assumed.
(The standard entries are asterisked below,)
The options available with GMAP are as follows:

LSTOU-~-A listing of the output will be prepared.*

NLSTOU--No listing of the output will be prepared.

DECK--A program deck will be prepared as part of the output of this processor.*

NDECK-~-No program deck will be prepared,

COMDK--A compressed version of the source program will be prepared.

NCOMDK--No compressed deck will be prepared, *

GMAC--The GMAP System Macros are required for assembly.*

NGMAC--The GMAP System Macros must not be used for this assembly.

GE-600 SERIES

111-80

The content of columns 73-80is used as an identifier to uniquely identify the binary object programs
resulting from the assembly,

Compressed Decks

The Assembler program contains routines and tables for compressing source subprogram
cards from a one-instruction-per-card input to a multiple-instruction-per-card input. This
Assembler feature is provided primarily for reducing the size of input source decks as concerns
handling and correcting (altering) the input subprogram. (For details of the compression and the
compressed deck card format, refer to the next paragraph and the GE-625/635 File and Record
Control Reference manual CPB-1003)

The compressed deck (COMDK) option is specified in the operand field of the $ GMAP control
card, The normal mode of Assembler operation is NCOMDK; that is, no compressed deck
is produced. To use the Assembler COMDK feature, the $ GMAP control card would appear as

$ GMAP COMDK

and be placed as the first card of the deck. When combined with the standard output options,
the above control card would cause the Assembler to produce:

1. An output listing containing in its format a complete listing of the source card images
(See the listing and symbolic reference table formats, page II-91.)

2. A compressed deck of the source card images, column-binary, alphanumeric,

The COMDEK format is produced by a procedure which compresses any Hollerith-coded card
image by removing sequences of 3 or more blanks and packing the information in standard column
binary form, ’

To accomplish the compression, the Hollerith card is considered as being made up of a series
of fields and strings. A field is defined as a segment of the card containing no sequences of more
than 2 blanks except at the beginning. A string is that portion of a field obtained by deleting any
leading blanks.

Each field specification starts with the octal value of A(0 ~A- 6'78) followed by the octal value of
B(0- A. 67g) followed by the B characters constituting the string. (A=the number of characters
in the field; B=the number of characters in the string,)

The size of A and B is limited, as indicated above, in order to reserve a set of codes to serve
as flags when found in a position in which a count had been expected. If a given length exceeds
the maximum length, it is segmented into separate fields. For example, given 70 (decimal)
consecutive nonblank characters, it is necessary to treat this as two fields with:

Field1 A
Field2 A

B =67 (octal values)
B = 17 (octal values)

67,
17,

The field specifications (A,B,string) are packed sequentially on a binary card in the format
indicated below. A fieldspecification may be started on a COMDEK card (X) and may be completed
on the following card (X+1).

GE-600 SERIES

III -81

The following codes for A are used to designate specific conditions. The B character is not
present in such cases.

A=20 End of a compressed card; continue decoding on the next card
A = Tig End of encoded string for a given Hollerith card image

A = T6g End of the compressed deck segment

A = 708 Available for extension

The COMDEK card layout consists of:

Word 1: 0-2 Column binary card type 5
3-8 Zeros
9-11 101 (7-9 punches)
12-35 Binary sequence number
Word 2: Checksum of word 1 or words 3-24
Words 3- 24: Compressed card image
Words 25-27: Hollerith-coded label or zeros

The binary sequence number is maintained when a COMDEK output is produced and is checked
when the deck is used as input. When a sequence error is found in an input COMDEXK file, the
activity will be terminated.

The label words of the card are supplied in uncompressed form by the I/O Editor and give
identification data from columns 73-80 of the standard binary deck cards,

Source Deck Corrections

Corrections to an Assembler language source deck are made by the use of $ ALTER control
cards. A source program correction deck consists of the following parts in order:

1. $ GMAP control card
2. Text of the subprogram in either of two forms:

a, Standard one-instruction-per-card deck
b. Compressed deck

3. 3 UPDATE control card (notifies the Comprehensive Operating Supervisor that the
cards to follow are to be placed on the A* (alter) file for use by the Assembler

4, ALTER Information

a. ALTER cards (contain the updating delimiting information)
b. New source cards which are to be inserted into the source deck as additions or
replacement instructions

GlE-6O0 SERIES

II1-82

The operand field of the ALTER card uses alter numbers that are obtained from the previous
assembly listing of the deck now being processed. (See page III-90.) The format of the ALTER
card is:

Card Column 1 8 16
4 I |
Symbolic Example $ IALTER n, m
|
Actual Example $ IALTER |0736/+,07464

The entries define whether the cards following are to be added or to replace cards in the primary
input file. These numbers are simply consecutive card numbers starting with 00001 and increasing
by one for each source input card.

When it is desired to insert cards into a deck the m subfield is not used. In this case, the cards
following this ALTER card, up to but not including the next ALTER card will be inserted just
prior to the card corresponding to alter number n.

When it is desired to delete and/or replace one or more cards from a deck, the m subfield is
given as shown above. When n and m are equal card n will be deleted. When m identifies a
card following n all cards n through m will be deleted. In addition, any cards following this
ALTER card up to but not including the next ALTER card will be inserted in place of the deleted
cards,

The end of an alter file is designated by the normal 4end—of-fi1e convention appropriate to the media
containing the file,

The $ UPDATE control card is prepared as indicated below.

Card Column 1 8 16
Symbolic Example $ | UPDATE l List Option
Actual Example $ I UPDATE I

The UPDATE control card is used when supplying alter input to a compiler or the Assembler.
In the input sequence for a job the $ UPDATE control card and associated ALTER card with
its alter statements must follow and be contiguous to the source program to which the alter
statements apply.

The operation field contains the word UPDATE. The variable field may contain the word LIST,
in which case a listing of the Alter input will be included with the output.

GE-600 SERIES

I11-83

ASSEMBLY OUTPUTS

Binary Decks

When the $ GMAP conirol card specifies the DECK option, the Assembler punches a binary
assembly cutput deck. Since the normal mode of the Assembler is relocatable or is implied as
a standard option, all addresses punched in the output cards are relative to zero. Alternatively,
still considering the DECK option the Assembler can operate in the absolute mode and punch
only abisolute addresses in the output cards,

The first card generated by GMAP for every subprogram cbject deck is a $ OBJECT card. The
format of the $§ OBJECT card is as follows:

Curd Column) 8 10 57 67 72 73 80

Symbolic Example $ IOBJ‘ECT |OPTIONAL COMMENT Date 01}{ Optional }

!
I | Ass'y LABEL

The LBIL pseudo-operation provides the optional comment and label. The date of the assembly,
as determined by a MME GETIME, is inserted in colummns 67-72,

This binary information may be represented on four types of binary cards, These cards and
their uses are summarized below, GE-625/635 Loader functions performed by using the inform-
tion from these cards are described in the Loader Manual, In addition, that manual describes the
memory map layouts applicable to each user subprogram. The user subprogram memory map
blocks are (1) the subprogram region (2) the LABELED COMMON region and (3) the BLANK
COMMON region,

CARD TYPE UsE

Preface Provides the Loader with (1) the length of the subprogram
text region; (2) the length of the BLANK COMMON region;
(3) the total number of SYMDEF, SYMREF, and LABELED
COMMON symbols; (4) the type identification of each symbol
in (3); and (5) the relative entry value or the region length
for each symbol in (3).

Relocatable Supplies the Loader with relocatable binary text by using
Binary Text preface card information and relocation identifiers where
the relocation identifiers specify whether the 18-bitfield refers

to a subprogram, LABELED COMMON, or BLANK COMMON

regions (of the assembly core-storage area) and will allow

the loader to relocate these fields by an appropriate value.

Absolute Provides the Loader with absolute binary text and the absolute
Binary Text starting-location value for Loader use in assigning core-storage
addresses to all words on the card,

Transfer Can be generated only in an absolute assembly and causes the
Loader to transfer control to the routine at the location given
on the card. (The transfer card is generated automatically
as the last card of an absolute subprogram assembly by
the END pseudo-operation; however, use of the TCD pseudo-
operation can cause the card to appear anywhere in the
assembly.)

The formats in which the Assembler punches the above cards are described in the paragraphs
to follow,

GE-600 SERIES

II1-84

Preface Card Format

Preface card symbolic entries are primary SYMDEF symbols secondary SYMDEF symbols,
SYMREF symbols, LABELED COMMON symbols (from the BLOCK pseudo-operation), and the
.SYMT, LABELED COMMON symbol. These symbols appear on the card in a precise order,
All SYMDEF symbols appear before any other symbol. Following the SYMDEF symbols are any
LABELED COMMON symbols, The SYMREF symbols are then recorded.

The format and content of the preface card are summarized as follows:

Word One: 100 ™ 10l n n

0 23 89 1t 12 17 18 35

ny--V is a value within the range 5 -V =17and represents the
size of the field within a special relocation entry needed to
point to the specific preface card entry. Thus, V:log2N+1,
where N is the number of LABELED COMMON and SYMREF
entries,

no--Word count of the preface card text

ng--Length of the subprogram

Word Two: Checksum of columns 1-3 and 7-72

Word Three: A M N

0 17 18 19 35

The value A is the length of BLANK COMMON; and N is two times the total number of SYMDEFs,
SYMREFs, and LABELED COMMONs. The M bit indicates, when set to 1, that the subprogram
must be loaded beginning at a location which is a multiple of eight.

Words Four,

Five: Symboll; A1, Ky
Words Six,
Seven: Symbolz; A?z K9

GE-600 SERIES

II1-85

R
s 2n+2, Char. Char. Char. Char. Char. Char.
2n+3: Symbol ;A K 1 2 3 4 5 6
n*’n, n

6 11 12 17 18 23 24 29 30 35

17 18 35

The even-numbered word contains the symbol in BCD. The value K defines the type symbol
in the even-numbered word; A is a value associated with K as explained in the following list,

If K equals zero, then the symbol is a primary SYMDEF symbol; A is the entry value relative
to the subprogram region origin,

If K equals one, then the symbolisa secondary SYMDEF symbol; A is the entry value relative
to the subprogram region origin,

If K equals five, then the symbol is a SYMREF symbol; A is zero.

If K equals six, then the symbol is a LABELED COMMON symbol; A is the length of the

region.

If K equals seven,

then the symbol is a .SYMT. LABELED COMMON symbol; A is the

length of the region reserved for debug information.

NOTE: If preface continuation cards are necessary, word three will be repeated unchanged on

all continuation cards,

Relocatable Card Format

A relocatable assembly card has the format and contents summarized in the following comments,

Word One: 010

101 n, n

GE-600 SERIES

8 9 11 12 17 18 35

nl--O indicates that loading is within the subprogram region of the
user subprogram core-storage area

ng--Word count of the data words to be loaded using the origin and
relative address in this control word

ng--Loading address, relative to the subprogram region origin.

I11-86

or for the alternative cases:

Word Two:

ny--i, where i£0 indicates that the ith entry (beginning with the first
LABELED COMMON entry in the preface card text has been used and
that ng is relative to the origin of that entry.

Checksum of columns 1-3 and 7-72

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Three-

Five:

9 10 14 15 19 20 24 25 29 30 34 35

9 10 14 15 19 20 24 29 30 34 35

Y

Words Six-
Twenty-Four:

Relocation Scheme

9 10 14 15 19 20 24 35

Relocation data--words three and four comprise seven 5-bit relocation
identifiers, while word five holds 5 such identifiers. The five bits
of each identifier carry relocation scheme data for each of the card
words (7+7+5=19, or fewer). The identifiers are placed in bit positions
0-34 of words three and four and in 0-24 of word five. (Refer to the
Relocation Scheme description in the paragraph following.)

Instructions and data (up to 19 words per card). If the card is not
complete and at least two words are left vacant, then after the last
word entered, word one may be repeated with a new word count and
loading address. The loading is then cnntinued with the new address,
and the relocation bits are continuously retrieved from words three
through five. This process may be repeated as often as necessary to
fill a card.

For each binary text word in a relocatable card, the five bits--A, BC, and DE--of each relocation
scheme identifier are interpreted by the Loader as follows:

GE-600 SERIES

Bit A--0 (reserved for future use)
Bits BC--Left half-word

Bits DE--Right half-word

III-87

To every 18-bit half-word one of four code values apply; these are:

CODE VALUE MEANING
xx = 00 Absolute value that is not to be modified by the Loader.

= 01 Relocatable value that is to be added to the origin of the sub-
program region by the Loader.

= 10 BLANK COMMON, relative value that is to be added to the origin
of the BLANK COMMON region by the Loader.

=11 Special entry value (to be interpreted as described in the next
paragraph)

apply where xx stands for BC or DE.

If special entry is required, the Loader decodes and processes the text and bits of the 18-bit
field (left/right half of each relocatable card word) as follows:

Bit 1 --This is the sign of the addend; O implies a plus (+) and 1 implies
a minus (-).

Bits 2-»V+1 --The value V thatwas specifiedinword1l of the preface card dictates
the length of the field. The contents of the field is a relative number
which points to a LABELED COMMON region or a SYMREF that
appeared in the preface card. The value one in this field would point
to the first symbol entry after the last SYMDEF.

Bits V+2—=18 --The value in this field is the addend value that appeared in the
expression. If the field is all bits then the corresponding 18 bits
of the next data word are interpreted asthe addend. In this special
case there will be no relocation bits for the addend word.

All references to each undefined special symbol are chained together. When the symbol is defined,

the Loader can rapidly insert the proper value of the symbol in all relocatable fields that were
specified in the chain.

Absolute Card Format

The absolute binary text card appears as shown below.

Word One:

Word One: 001 np 101 n, ng

0 23 89 11 12 17 18 35

nl--O
ng--Word count of the card text

ng--Loading address relative to the absolute core-storage origin
zero (of allocated memory).

GlE-600 SERIES

I11-88

Word Two: Checksum of columns 1-3 and 7-72
Words Three- Instructions and text (22 words per card, maximum). If the card
Twenty-Four: is not complete and at least two words are left vacant, then after

the last word entered, word one may be repeated with a new word
count and loading address.

Transfer Card Format

The transfer card is generated by the Assembler only in an absolute assembly deck. Its format
and contents are:

Word One:
Word Omne: 000 ny 101 n, ny
0 23 89 11 12 17 18 35
nl--O
nz--O
ng--Transfer address (in absolute only).
Words Two- Not used

Twenty-Four:

Assembly Listings

Each Assembler subprogram listing is made up of the following parts:

1. The contents of all preface cards (primary SYMDEF symbols, secondary SYMDEF
symbols, SYMREF symbols, LABELED COMMON symbols--from the BLOCK pseudo-
operation-- and the SYMT. LABELED COMMON symbol). This section is omitted
from an absolute assembly.

2. The sequence of instructions in order of input to the Assembler.

3. The symbolic reference table.

Full Listing Format

Each instruction word produced by the Assembler is individually printed on a 120-character line.
The line contains the following items for each such word of all symbolic cards:

1. Error flags--one character for each error type (see “Error Codes” page III-90).

9. Octal location of the assembled word.

GE-600 SERIES

111-89

3. Octal representation of the assembled word

4. Relocation bits for the assembled word (see the topic, Relocation Scheme, Loader
manual)

5. Reproduction of the symbolic card, including the comments and identification fields,
exactly as coded

The exact format of the full listing is shown below.

Fields A B C D E F G H

Print line

columns 1-6 7-12 \37-20 22-25 27,28 31-33 35-39 41-120
¥ o
Machine Source Card

Instruction Image
A--Error flags E--Tag field modifier
B--Relative/absolute location F--Relocation bits
C--Operand address G-~Alter statement number
D--Operation code H--Card image

Several variations appear for bit positions 15 through 28. (The six, four, two subfield groups
C, D, and E shown above is the octal configuration for machine instructions.) These are summa-
rized in the table below in which the X represents one octal digit.

Type of Machine Word Listing Format Source Program Instruction

Processor instruction XXXXXX XXXX XX Processor instruction and

and indirect address indirect address word

Data XXXXXXXXXXXX Data generating pseudo-
operations (OCT, DEC,
BCI, etc.)

Data Control XXXKXAX XX XXXX Data Control Word (DCW)

Special 18-bit field data XXXXXX XXXXXX ZERO pseudo-operation

Input/output command XX XXXX XXXXXX Input/output pseudo-

operation (See Appendix D.)

Error flags are summarized at the end of this section. The interpretation of the relocation bits
is described in the Loader manual. That field (F) will be blank in an ahsolute assembly.

Preface Card Listing

The listing of the preface information is ina self-explanatory format, with each major subdivision
of preface symbols preceded by a heading. The order is the same as that of the card(s) produced,

Gl=-600 SERIES

II1-90

Primary SYMDEFs, Secondary SYMDEFs, LABELED COMMON, and SYMREFs. The LABELED
COMMONs and SYMREFs are numbered sequentially 1 through n, where this number represents
the special relocation entry number employed in referencing these special symbols.

BLANK COMMON Entry

Prior to the listing of the special symbols, the Assembler enters a statement of the amount of
BLANK COMMON storage requested by the subprogram. The statement format is self-explanatory.

Symbolic Reference Table

The symbol table listing contains all symbols used, their octal values (normally, the location
value), and the alter numbers of all instructions that referenced the symbol. The table format is
as follows:

Definition Symbol Alter Numbers
00364 BETA 00103,00103,01027,01761,03767,07954

The above sample indicates that the symbol BETA has been assigned the value 3648 and is

referenced in five places: namely, at alter number positions 00103,01027, 01761, 03767, and
07954 in the listing of instructions. The first alter number is the point in the instruction listing
where the symbol was defined. If an instruction contains a symbol twice, the alter number for
that point in the instruction listing is given twice. The alter numbers are assigned sequentially
in the subprogram listing, one per instruction. Because of this fact, it is easy for the program-
mer to locate in the listing those card images that referenced any particular symbol as well as
locate the card image that caused the symbol to be defined.

GE-600 SERIES

I -91

Error Codes

The following list comprises the error flags for individual instructions and pseudo-operations.

ERROR
Undefined

Multidefined

Address

Index

Relocation

Phase

Even

Conversion

Location
Operation

Table

GE-600 SERIES

FLAG

U

CAUSE
Undefined symbol(s) appear in the variable field.

Multiple-defined symbol(s) appear in the location
field and/or the variable field.

Illegal value or symbol appears in the variable
field. Also used to denote lack of a required field.

Illegal index or address modification.

Relocation error; expression in the variable field
will produce a relocatable error upon loading.

Phase error; this implies undetected machine error
or symbols becoming defined in Pass two with a
different value from Pass one.

Inappropriate character in column 7.

Error in conversion of either a literal constant or
a subfield of a data-generative pseudo-operation.
Illegal character.

Error in the location field.

Illegal operation.

An assembly table overflowed not permitting proper

processing of this card completely. Table overflow
error information will appear at the end of testing.

Ir-92

IV. CODING EXAMPLES

PRELIMINARY

This chapter contains examples of coding techniques for performing typical program functions.
These examples:

1. Indicate how certain very efficient Processor instructions can be used

2. Illustrate the use of address modification variations for indexing, indirection and
automatic tallying

3. Demonstrate operations performed on characters
4, Show operations on fixed- and floating-point numbers
5. Present the use of the BCD instruction
The list of examples is by no means complete in that it does not present all of the processor

capabilities; however, the examples provided can serve as convenient references for program-
mers newly acquainted with the GE-635.

Each example is self-contained and self-explanatory. In most cases, questions that may be
raised can be answered by referring to the descriptions of particular instructions or pseudo-
operations. Convenient references are contained in Appendices A through D.

EXAMPLES

Fixed Point to Floating Point (Integer)

The following example illustrates the conversion of a fixed-point integer to floating point (float
an integer). The integer to be converted is in the location M,

Step 01 resets the Overflow Indicator.
Step 02 places the binary integer to be converted in the accumulator,

Step 03 places zeros in the quotient register,
Step 04 sets the exponent register to 3510.

Step 05 converts the number in the accumulator to floating point,

GE-600 SERIES

v-1

For example, if the contents of M equal 0000000000028, then the contents of the floating-point

register will be E = 2 and AQ = 2000000000000000000000008 at the completion of step 05.

10

01 TOV 1,IcC

02 LDA M . FLOAT AN INTEGER M
03 LDO ,DL CC(AD) = M AT B35,
04 LDE =35825,DU C(E) = 35,

05 FNO NORMALIZE M

Floating Point to Fixed Point (Integer)

The following example illustrates the conversion of a double-precision, floating-point number
to a fixed-point number, binary point 71, The result will be only the integral part of the number,

The number to be converted must lie between -2'71 and 271-1 inclusive,

Step 01 loads the floating-point number to be converted into the floating-point register,

Step 02, an unnormalized floating add of zero (exponent of 71), causes the contents of AQ to be
shifted right a number of places equal to the difference between 71 and the exponent of the
number to be converted, This will leave in AQ the binary integer (binary point 71) equal to the
integral part of the floating-point number in X and X+1,

For example, if prior to executing step 02, the floating-point reegister contained -2, that is, if
the exponent register contained 210 and AQ contained 400000000000000000000000g, then the re-

sult in AQ after the addition of zero (exponent Ti) would be 7777777777777777777777768.

01 DFLD X COMPUTE THE INTEGEP PART OF
A FLOATING-POINT NUMBER CON-
TAINED. IN X AMD X+1,

02 UFA =71825,DU FIX THE RESULT IN A0, BINARY
POINT 71,

GEE-600 SERIES

Iv-2

Real Logarithm

Purpose:

Compute log X for ALOG(X) or ALOG10(X) in an expression,

Method:
1. log,X = log, @HF) =1+ log, F, where X-2'+F,
2, log X = log Z(IOgZX) = (log,X) * (log_2), and similarly log. .X = (log,X) * (log, .2)
: e e 2 e ” 10 2 1077
F-V2
- * —
3. log2X =z A +—2£-— -1, where Z = 2 and
z°-C 2 F+\2_
2
A = 1.2920070987
B = -2.6398577031
C = 1.6567626301
4. X and log X are real numbers, with values of X from 2-129 to 212'7 -2100 inclusive,
5. log X is accurate to 8 decimal places,
Use:
Calling Sequence -- CALL ALOG(X) for logeX

GE-600 SERIES

CALL ALOG10(X) for log, X

SYMDEF
LOGS SAVE
FLD
FNO
TZE
TMI
BEGIN FCMP
TZE
STE
LDE
DFAD
DFST
DFSB
DFDV
DFST
DFMP
DFSB
DFD1
DFAD
DFMP
DFST
1 LDA
LDQ
LDE
FSB
DFAD
INDIC DFMP
RETURN
ERR1 cALL
UNITY FLD
RETURN
ERR2 CALL
FNEG
TRA

ALOG10ESTC2
TRA

DEC
ALOG ESTC2
TRA

DEC

EALN1 DEC
EALN2 DEC
A DEC
B DEC
c DEC
SRHLF DEC
SRTWO DEC
Z BSS
END

GE-600 SERIES

ALOG10,ALOG

+FXEM,(EALN1)
=0.0,DU

LOGS
+FXEM,(EALN2)

BEGIN

INDIC

LOGS
+301029996D0
INDIC

LOGS
6.93147180559D-1
9

10
.12820070987D1
-.26398577031D1
.16567626301D1
.707106781187D0
J1414213562374D1
2

REAL LOGARITHM FUNCTIONS
X = (2¥%%1) ® F = ARGUMENT

ERROR IF X=0
ERROR IF X NEGATIVE

LOG(1) = 0
STORE 1 AT BINARY POINT 7
OBTAIN F

Z = (F - SQRTC1/2))/CF + SORT(1/2))

72

22-c2

B/(Z*-C)

A+B/(Z2-¢)

2CA+B/(Z22-C)

Z = Z%CA + B/(Z¥%2-C)) = LOG2(F) + 1/2

FLOAT 1
LOG2(X) = I + LOG2(F)
CONVERT TO BASE 10 OR E

ERROR EXIT NUMBER 1 (X=0)

ERROR EXIT NUMBER 2 (X IS NEGATIVE)

REAL COMMON LOGARITHM

REAL NATURAL LOGARITHM

SQUARE ROOT OF TWO DIVIDED 8Y TWO
SQUAPE ROOT OF TWO

BCD Addition

The following example illustrates the addition of two words containing BCD integers, The
example limits the result to 999999,

Step 01 places the number in A into the accumulator,

Step 02 adds the number in B to the accumulator. Column V in the table, following, shows the
possible results for any digit. It should be noted that there are 19 possible results, indicated
by lines 0-18.

Step 03 forces any carries into the units position of the next digit, Lines 10-18 of Column V
contain the sums that will carry into the next digit. Column W contains the 20 possible re-
sults for each digit position, The additional possibility (line 19) arises from the fact that there
can be a carry of one into a digit,

Step 04 stores the intermediate result in C,

Step 05 extracts an octal 60 from each non-carry digit. The results are indicated in column X,
The digits that did not force a carry (lines 0-9) result in an octal 60, the digits that had a carry
into the next digit (lines 10-18) result in 00,

Step 06 performs an exclusive OR of the contents of the accumulator with the contents of C.
This in effect subtracts octal 60 from each digit that did not have a carry (lines 0-9). The
results are indicated in column Y,

Step 07 shifts the octal 60s to the right three places.

Step 08 negates the contents of the accumulator,

Step 09 is an add to storage the contents of the accumulator to the contents of C. This in effect
subtracts a 06 from each digit that did not have a carry, the results of which are indicated in
Column Z,

01 LDA A TO ADD C = A+B IN BCD,

02 ADLA B COMPUTE A+B

gz ADLA =0666666666666 ADD OCTAL 66 TO EACH DIGIT TO FORCE CARRIES
STA C

05 ANA =0606060606060 EXTRACT OCTAL 60 FRPOM EACH MNON=-CARRY

06 ERSA C SUBTRACT OCTAL 60 FROM EACH NON=CARRY

07 ARL 3 SUBTRACT OCTAL

08 NEG 06 FROM EACH

09 ASA C NON=CARRY

GE-600 SERIES

Iv-5

ADDITION RESULTS

LINE \ W X Y z

0 00 66 60 6 | 00
1 01 67 60 7 101
2 02 70 60 10 | 02
3 03 71 60 11 | 03
4 04 72 60 12 | 04
5 05 73 60 13 | 05
6 06 75 60 14 | 06
7 07 75 | 60 15 | 07
8 10 76 60 16 10
9 11 77 | 60 17 11
10 12 |00 | 0O 0] o0
11 13 |01 | 00 1] 01
12 14 |02 | 00 2 |02
13 15 {03 | 00 3103
14 16 |04 | 00 4 | 04
15 17 05 | 00 5§05
16 20 106 | 00 6 | 06
17 21 J07 | OO 7] 07
18 22 10 | 00 10 10
19 - 11 | 00 11 11

BCD Subtraction

The following is an example of subtracting one BCD number from another BCD number. The
contents of A must be equal to or greater than the contents of B,

Step 01 loads the accumulator with the contents of A,

Step 02 subtracts the contents of B from the accumulator, The possible results for each digit
are indicated in Column W of the table that is included with this example,

Step 03 stores the intermediate result in C,

Step 04 extracts an octal 60 from each digit that required a borrow, This will leave an octal
60 in each digit position where there was a borrow, The possible results of this instruction

are indicated in Column X, lines 0-19 (10-19 refer to those which result in octal 60).

Step 05, an exclusive OR to storage, in effect subtracts the octal 60’s in the accumulator from
the corresponding digit in C. The possible results for each digit are displayed in Column Y,

Step 06 shifts the octal 60’s in the accumulator right three places.
Step 07 negates the contents of the accumulator,

Step 08, an add to storage, is in effect a subtraction of 06 from each digit that required a borrow,
the result being placed in C. Column Z of the table reflects the possible results for each digit,

GE-600 SERIES

01 LDA } A {TO SUBTRACT C = A-B IN BCD.

02 SBLA B COMPUTE A-B

03 STA C

o4 ANA =0606060606060 EXTRACT OCTAL 60 FROM EACH BORROW
05 ERSA C SUBTRACT OCTAL 60 FROM EACH BORROW
06 ARL 3 SUBTRACT OCTAL

07 NEG 06 FROM EACH

08 ASA c BORROW

SUBTRACTION RESULTS

LINE W X Y Z
0 11] 11 11
1 10 0 10 10
2 07 0 07 07
3 06 0 06 06
4 05 0 05 05
5 05 0 04 04
6 03 0 03 03
7 06 0 02 02
8 01 0 01 01
9 00 0 00 00

10 77 60 17 11
11 76 60 16 10
12 75 60 15 07
13 74 60 14 06
14 73 60 13 05
15 72 60 12 04
16 71 60 11 03
17 70 60 10 02
18 67 60 7 01
19 66 60 6 00

Character Transliteration

The following example illustrates a method of transliterating each character of a card image that
has been punched in the FORTRAN Character Setto the octal value of the corresponding character
in the General Electric Standard Character Set. There are 48 characters in the FORTRAN Set
and 64 characters in the General Electric Standard Character Set. Each character that is punched
invalidly (not a standard punch combination in the FORTRAN Set) is converted to a blank, The
card is origined at IMAGE.

Steps 0@ and 02 initialize the indirect word TALLY2.

Step 03 picks up the character to be transliterated by referencing the word TALLY2 with the
Character from Indirect (CI) modifier. This will place the character specified by bits 33-35
of TALLY2 from a location specified by bits 0-17 of TALLY2 into the accumulator, bits 29-35.
Bits 0-28 of the accumulator will be set to zero. Step 03 is forced even so as to place the four-
step loop (step 03-06) in two even/odd pairs. This decreases run time,

Step 04 picks up the corresponding General Electric standard character from the address
TABLE modified by the contents of accumulator, bits 18-335.

Step 05 places the transliterated character back in the card image where it was originally picked
up. The Sequence Character (SC) modifier increments the character specified in bits 33-35
of the word TALLY2,

GE-600 SERIES

Each time the character position becomes greater than 5, it is reset to zero; and the address
specified in bits 0-17 of TALLY2 is incremented by one. The tally in bits 18-29 of the same word
is decremented by 1 with each SC reference, Whenever a tally reaches zero, the Tally Runout
Indicator is set ON, Otherwise, it is set OFF,

Step 06 tests the Tally Runout Indicator. If it is OFF, the program transfers to LOOP; if not,
the next sequential instruction is taken,

The table, TABLE, is 64 locations long. The character in each location is a General Electric
standard character that corresponds to a FORTRAN character in the following manner, The
relative location of a particular character to the start of the table is equal to the binary value
of the corresponding FORTRAN character, For example, an A punched in the FORTRAN Char-
acter Set has the octal value 21(1710). The relative location 17 to TABLE contains an A in the

General Electric Standard Character Set. A 3-8 punch in the FORTRAN Set represents an =
character, The 3-8 punch would be read as an octal 13(11 10). The relative location 11 to TABLE

contains an octal 75 (see line 21) which represents the = character in the General Electric
Standard Character Set.

01 LDA TALLY1 INITIALIZE TALLY WORD

02 STA TALLY2

03 LOOP ELDA TALLY2,CI PICK UP CHARACTER TO BE TRANSLITERATED
o4 LDO TABLE ,AL LOAD OR WITH TRANSLITERATED CHARACTER
05 STO TALLY2,SC STORE BACK ON CARD IMAGE

06 TTF LOOP IF TALLY HAS NOT RUN OUT CONTINUE LOOP

07 TALLY1 TALLY IMAGE, 80,0
08 TALLY2 ZERO

09 IMAGE BSS 14
10 TABLE ocT 0

11 ocT 1

12 ocT 2

13 ocT 3

14 ocT 4

15 ocT 5

16 ocr 6

17 ocT 7

18 ocT 10

19 ocT 11

20 ocT 20

21 ocT 75 3-8 PUNCH = IN FORTRAN SET
22 ocT 57 4-8 PUNCH ' IN FORTRAN SET
23 ocT 20 '

24 ocT 20

25 ocT 20

26 ocT 20

27 ocT 21

28 ocT 22

29 ocT 23

30 ocT 24

31 ocT 25

32 ocT 26

33 ocT 27

GE-600 SERIES

0T-AI

SIFIS 009-29

‘weadoad urew 9y} 03 SUIN}SI SUNNOJI 8Y} PUE PaINIaxa st g doys ‘9a13eIoU sawedaq 193s13aa jusyonb
ayy JI ‘eantsod paurewad 193)sidaa jusponb Jo syusjuod ayj Jr g1 deys 03 [oxjuod sasysueay g1 deig

‘an[eA aAne3su
® 0) paonpax aae I19)s1dad juarionb oy Jo sjuLUOd 9y} TUn dool 03 SUINOX 8y} 8sned AUO T[m
‘aroqe passeadxe 9SOy} UrY} IS0 ‘UI pUE U JO san[ea 2ANIsod JeU} [BSASI [[IM SUOTONJISUL 9saYy)
Jo uonpoedsur JoY)ang ‘0J9Z sTenbs W uayM U WOAF T JO MOJIOQ B pasned aaey pinom gl dais
asneoaq st sty jurod suy} j& 019z 08 OsTe pinom Je3stdaa juanionb 9y} Jo SjULUOD Y} uay} ‘I=u
pue g=w JJ ‘W+ug9gyg WJIOJ 8y} Ul passaIdxa o ued a1qe} aU} JO 921s 9yl ‘9[qe} Y} JO IZIS 3y}
woay 9¢Z Surjoraigns SI STY} ‘409139 ul ‘xs83stdax jusnonb ayj Jo LT-0 SIIq WO [S)oeIYNS UOT)
-OnIjsuy STY], ‘pejnoexe aq [1im g1 dois usyy ‘9l dejs Aq 39S J0U Sem J0)BOIPUl OI97Z 8y} JI ‘g1 daig

*9A0(e PAQLIOSAp SIU8A3 JO aouanbses ayj Jo asneoaq
punoj sem juowngae [enba ay) uaym uey) I9YSTY SUOHIBOOT M 3195 8q [IIM [J93S1dax Xapul I1eU)
pajou aq pInoys 31 ‘39S ST 31 J1 wexdoad urewr sy} 0} SUINIDI PUE I0}BOIPU] OI3Z 8y} 159} LT deis

‘0OJ9Z 0} 39S 9Ja® () I191S138d XapuI JO L,-0 SI1q
uaym JO }9s 8(q 0} I0}eIIpU] OX87Z B} sasned axedwiod ayj usym sajeuruas) sduanbas jeadaa ayl
‘1 £q pojuawWaIdap aae ‘) -0 S3q ‘Q 19)S13a1 XO9pul JO SIUIJUOD 8y} pue ‘fuoryonaisur jeadex oyl
u1 paryroads ST SB M\ AQ pajuUsSWI8IOUl ST [JI93SI38J XOpul ‘DwI} swes 8y} v ‘] JI33S1idaa xapur £q
paryIoads UOT}BI0T 9y} JO SIUSU0D 9Y) Ym paaeduwod aae (Juswindae yoreas ayj) Jojyefnwindoe ayy jo
SJUSU0D 8y} ‘panoaxa s1 gl dols awily Yoe g ‘UOINOIXS UOTIONIISUI 3y} JO }aeIS dUY} 1€ ‘)-0 SI1q
‘p J938180a Xapul JO SJUSIU0D 8y} 03} Tenba saurry Jo xsquunu € 91 doys so9nodxs ‘XI1dY ue ‘gr deoig

*019Z SBM d[qe} 89U} JO 9ZIS ayj J1 wexdoxd utewr sy} 0} uInNjal 0} Bulpnox 8y sasned [deg

(s Jo eouejyxodurr ey yno syurod g1
pue g1 sdas 03 PeaYR-J00] B) LT-0 S}Iq WO} | sjoexnqns A[9A109J3d 31 ‘Suol spaom 9gg jo 91dn
-Tnwx ® ST 91qe} 8y} J1 (Z) pue (T do9js 99S5) BUO[SpIOM OIX9Z J0U ST 9Iqe} 9} 8Ins 3(0} }$9) B Sopla
-oad 31 (1) :s9081d OM] UI [nJSUTUBSW SaUI00S8([JO SunorIgnNs AU ‘POYOIEIS 8¢ 0} 9Iqe} auyy Jo
9Z1S 8y} woaj T sjoeIigns ‘J09JJe Ul ‘s1y], -I831SI88a jusrionb ay) woal HZOI Sioexgqns g1 deig

‘ySnoayy ssed 3sSaIy 9y} UO SIWI} W JO WINWIXBW B PIJNdaxXs aq
03 uorponajsut yeadax sy} 9SNeO [[IM SIYJ, "0 JI93ST39J XOpul JO L-0 S31q Ul padeld ag pnom w usy)
‘gz > w > o pue ‘0 C U AI9UM ‘WIHUQGZ ULIO] 9Y} JO ST paydaess oq 03 3[4e} dY) JO 9ZIS 8y}
‘xsaamoy ‘JI ‘sewmy) 9GgZ 8INdaxse 03 jeadsx oy} asned (M suonyisod J1q ASOY) Ul Soxa7 T J93s138a
Xapul Jo -0 S} OJUl PSPeO] aq [[IM SOI9Z ‘SpIom gGg Jo d1dnnwi ' ST 9[qe} Y} jO 8ZIs 8y Ji
‘snyl, ‘4-0 S3Iq ‘0 J93S180a X9pul ul 3[qe} 98U} JO IZIS Y} JO S}14 § 3sB[2y} saoeyd OSTe UOI}ONIISUL
aYyJ], -"uo uonIpuod jesdaa ajeurwad} JZ I Ul $19s ‘108318 Ul ‘p9 Joqunu SYL Q) I9}S18aa Xapur
u1 ‘p9 snid a9ys18aa jusrionb ayy jo (¢g-8T1 SI1Q) JIBY JoMO] 8y} JO susjuod ayy saoeld gy dojg

‘SpJed JusWwod axe [1-10 sdojg

Steps 01-11 are comment cards.

Step 12 places the contents of the lower half (bits 18-35) of the quotient register plus 64, in
index register 0. The number 64, in effect, sets the TZE terminate repeat condition on. The
instruction also places the last 8 bits of the size of the table in index register 0, bits 0-7. Thus,
if the size of the table is a multiple of 256 words, zeros will be loaded into bits 0-7 of index
register 1. Zeros in those bit positions will cause the repeat to execute 256 times. If, however,
the size of the table to be searched is of the form 256n+m, wheren > 0, and 0 < m < 2586,
then m would be placed in bits 0-7 of index register 0. This will cause the repeat instruction to
be executed a maximum of m times on the first pass through.

Step 13 subtracts 1024 from the quotient register. This, in effect, subtracts 1 from the size
of the table to be searched. The subtracting of 1 becomes meaningful in two places: (1) it pro-
vides a test to be sure the table is not zero words long (see step 14) and (2) if the table is a mul-
tiple of 256 words long, it effectively subtracts 1 from bits 0-17 (a look-ahead to steps 18 and
19 points out the importance of this).

Step 14 causes the routine to return to the main program if the size of the table was zero.

Step 15, an RPTX, executes step 16 a number of times equal to the contents of index register 0,
bits 0-7, at the start of the instruction execution. Each time step 16 is executed, the contents
of the accumulator (the search argument) are compared with the contents of the location specified
by index register 1. At the same time, index register 1 is incremented by W as is specified in
the repeat instruction; and the contents of index register 0, bits 0-7, are decremented by 1.
The repeat sequence terminates when the compare causes the Zero Indicator to be set or when
bits 0-7 of index register 0 are set to zero.

Step 17 test the Zero Indicator and returns to the main program if it is set. It should be noted
that index register 1 will be set W locations higher than when the equal argument was found
because of the sequence of events described above.

Step 18. If the Zero Indicator was not set by step 16, then step 18 will be executed. This instruc-
tion subtracts 1 from bits 0-17 of the quotient register. In effect, this is subtracting 256 from
the size of the table, The size of the table can be expressed in the form 256n+m. I m=0 and
n=1, then the contents of the quotient register would also go zero at this point, This is because
step 13 would have caused a borrow of 1 from n when m equals zero, Further inspection of
these instructions will reveal that positive values of n and m, other than those expressed above,
will only cause the routine to loop until the contents of the quotient register are reduced to a
negative value,

Step 19 transfers control to step 15 if the contents of quotient register remained positive. If the
quotient register became negative, step 20 is executed and the routine returns to the main program.

GEE-BO0 SERIES

Iv-10

It should be noted that when control is transferred back to step 15, index register 0, bits 0-7,
contains zeros (causes the repeat to be executed a maximum of 256 times); and index register
1 contains the address of the next location in the table that is to be searched.

01 ® CALLING SEQUENCE IS

02 ® LDA ITEM SEARCH ITEM,

03 ® LDO SIZE NUMBER OF TABLE ENTRIES--AT B25,

ou ® LDX1 FIRST,DU LOCATION OF FIRST SEARCH WORD IN TABLE,
05 ® TSX2 TLU CALL TABLE LOOKUP SUBROUTINE.

06 ® TZE FOUND TRANSFER IF SEARCH ITEM IS IN TABLE, OR
07 ® TNZ ABSENT TRANSFER IF SEARCH ITEM IS NOT IN TABLE.
08 ® USE ONE OF THE TWO INSTRUCTIONS IMMEDIATELY ABOVE,

09 * IF IN TABLE, C(X1)-W WILL BE THE LOCATION OF THE MATCHING SEARCH
10 ® WORD, OTHERWISE, C(X1)-W WILL BE THE LOCATION OF THE LAST
11 ® SEARCH WORD IN THE TABLE, W IS THE NUMBER OF WORDS PER ENTRY,

12 TLU EAXO 64,0L PICKUP SIZE (MOD 256) AND TZE-BIT,

13 SBLO 1024,DL SIZE = SIZE-1,

14 TMI ,2 EXIT IF SIZE WAS 0--EMPTY TABLE,

15 TLU1 RPTX S NOTE THAT 0 REPRESENTS 256 (MOD 256D,
16 CMPA ,1 PERFORM TABLE LOOKUP

17 TZE 2 EXIT IF SEARCH ITEM IS IN TABLE.

18 SBLO 1,DU SIZE = SIZE-256,

19 TPL TLU CONTINUE TABLE LOOKUP IF MORE ENTRIES,
20 TRA 2 EXIT--SEARCH ITEM IS NOT IN TABLE;

Binary to BCD

The following example illustrates a method of converting a number from binary to BCD. The

example converts a number that is in the range of -106+1 to +106-1, inclusive.

Step 01 places zeros in index register 2.
Step 02 loads the accumulator with the binary number that is to be converted.

Steps 03 and 04 perform the conversion of the binary number in the accumulator to the Binary-
Coded Decimal equivalent. Step 03 will repeat step 04 six times. It will also increment the con-
tents of index register 2 by one after -each execution.

The BCD instruction, step 04, is designed to convert the magnitude of the contents of the accu-
mulator to the Binary-Coded Decimal equivalent. The method employed is to effectively divide a
constant into this number, place the result in bits 30-35 of the quotient register, and leave the
remainder in the accumulator. The execution of the BCD instruction will then allow the user to
convert a binary number to BCD, one digit at a time, with each digit coming from the high-order
part of the number. The address of the BCD instruction refers to a constant to be used in the
division, and a different constant would be needed for each digit. In the process of the conver-
sion, the number in the accumulator is shifted left three positions. The C(Q)O_35 are shifted
left 6 positions before the new digit is stored.

GE-600 SERIES

Iv-11

In this example, the constants used for dividing are located at TAB, TAB+1, TAB+2,...,TAB+5.
If the value in X were 0000005222418, the quotient register would contain 010'7030201078 at the

completion of the repeat sequence. Step 05 stores the quotient register in Y.

The values in the table below are the conversion constants to be used with the Binary to BCD
instruction, Each vertical column represents the set of constants to be used depending on the
initial value of the binary number to be converted to its decimal equivalent. The instruction

is executed once per digit, using the constant appropriate to the conversion step with each
execution.

An alternate use of the table for conversion involves the use of the constants in the row cor-
responding to conversion step 1. If after each conversion, the contents of the accumulator are
shifted right 3 positions, the constants in the conversion step 1 row may be used one at a time
in order of decreasing value until the conversion is compiete,

BINARY TO BCD CONVERSION CONSTANTS

Starting e ~ ~ ~
Range S n Y I X - v’ D P v
> [+ S N >) S ™ o ~
of ~ S 5 o S) ~ o) () (o)
~ ~ I ~ ~
C(AR) 4 Y 4 4 4 4 { 4 4 4
g ~ i ~ ind ~ g ~ ~ ~
&) +* L) N o* w* W ok * S
3 3 $ o Q o S S g S
)
Conversion N I D v r v ‘ » A ”
Step E] 8 7 6 5 A 3 2 1 ‘]
1 L8 x10 8 x10 18 x10 18 x10]8 x10” 8 x10 |8 x10” |8 x10” la x10°]8
2 | 84x10 82x107 | 8x10° | 82x10° | 82x10% ¥84x10° [84x10% |8%x10' 8¢
3 |.8x10 85x10° 1 83x10° | 83x10% [83x107 183x107 [83x10T [3
4 | 8%x10 8%x10° | 8%x10% | 8%x103 | 8%x107 [8%x10! |8
5 | 82x10 8°x10% | 82x10° | 82x102 | 8°xi0! [g8
6 [8°x10 805107 | 8%x10% [8101 [8
7 L8/x10° | 87x102 I8/x101]38
8 | 8%x10 8%x10l I8
9 187x0! | g7
10 |8V
01 LDX2 0,DU PLACE ZEROS IN X2
02 LDA X LOAD ACCUMULATOR WITH VALUE TO
BE CONVERTED
03 RPT 6,1 REPEAT 6 TIMES, INCREMENT BY 1
oL BCD TAB, 2 DIVIDE BY an, TAB+1, ETC
05 STO Y STORE CONVERTED NUMBER IN Y
06TAB DEC 800000, 640000, 512000, 409600, 327680,
DEC 26214y

GE-BO0 SERIES

Iv-12

BY FUNCTIONAL CLASS WITH PAGE REFERENCES AND TIMINGS

APPENDIX A. GE-625/635 INSTRUCTIONS LISTED

DATA MOVEMENT

Load

LDA
LDQ
LDAQ
LDXn
LREG
LCA
LCQ
LCAQ
LCXn

EAA
EAQ
EAXn

LDI
Store

STA
STQ
STAQ
STXn
SREG
STCA
STCQ
STBA
STBQ
STI
STT
SBAR
STZ
STC1
STC2

Shift

ARS
QRS
LRS

ALS
QLS
LLS

ARL
QRL
LRL

ALR
QLR
LLR

235
236
237
22n
073
335
336
337
32n

635
636
62n

634

755
756
757
74n
753
751
752
551
552
754
454
550
450
554
750

731
732
733

735
736
737

771
772
773

775
776
777

Load A

Load Q

Load AQ

Load Xn

Load Registers

Load Complement A
Load Complement Q
Load Complement AQ
Load Complement Xn

Effective Address to A
Effective Address to Q
Effective Address to Xn

Load Indicator Register

Store A

Store Q

Store AQ
Store Xn
Store Register

Store Character of A (6 Bit
Store Character of Q (6 Bit
Store Character of A (9 Bit
Store Character of Q (9 Bit

Store Indicator Register
Store Timer Register

Store Base Address Register

Store Zero

Store Instruction Counter plus 1
Store Instruction Counter plus 2

A Right Shift
Q Right Shift
Long Right Shift

A Left Shift
Q Left Shift
Long Left Shift

A Right Logic
Q Right Logic
Long Right Logic

A Left Rotate
Q Left Rotate
Long Left Rotate

GE-625
Timing
(nsec)#

GE-635
Timing
(11sec)”

Reference
(Page)

/See Calculation of Instruction Execution Times, page II-33.

GlE-600 SERIES

Ewpowwcowwww

WWWWWWwWwwWwwWwwkHwWwwWwww
[S RS IS INS) RS BN I)) IS IS NS IS IS IS]

PPN NP PN
(el el «n]

(o=]

coo

QOO0 OoOOCO

[l el e}

—_

—

e e b e e

PPN NNDD NN WNN
COTONOANNANANO AW

o o o @ & o [eclioclies]

oo oo

46
46
46
46
47
47
48
49
50
51
52
52
52

53

54
54
54

55
55
56

56
56
57

57
57
58

FIXED-POINT ARITHMETIC

Addition
ADA 075
ADQ 076
ADAQ 077
ADXn 06n
ASA 055
ASQ 056
ASXn 04n
ADLA 035
ADLQ 036
ADLAQ 037
ADLXn 02n
AWCA 071
AWCQ 072
ADL 033
AOS 054
Subtraction
SBA 175
SBQ 176
SBAQ 177
SBXn 16n
SSA 155
SSQ 156
SSXn 14n
SBLA 135
SBLQ 136
SBLAQ 137
SBLXn 12n
SWCA 171
SWCQ 172
Multiplication
MPY 402
MPF 401

Add to A
Add to Q
Add to AQ
Add to Xn

Add Stored to A
Add Stored to Q
Add Stored to Xn

Add Logic to A
Add Logic to Q
Add Logic to AQ
Add Logic to Xn

Add with Carry to A
Add with Carry to Q

Add Low to AQ

Add One to Storage

Subtract from A
Subtract from Q
Subtract from AQ
Subtract from Xn

Subtract Stored from A
Subtract Stored from Q
Subtract Stored from Xn

Subtract Logic from A
Subtract Logic from Q
Subtract Logic from AQ
Subtract Logic from Xn

Subtract with Carry from A
Subtract with Carry from Q

Multiply Integer
Multiply Fraction

GE-625 GE-635

Timing Timing Reference

(nusec)# (usec)s (Page)
3.0 1.8 I1-59
3.0 1.8 59
3.0 1.9 60
3.0 1.8 60
4.0 2.8 61
4.0 2.8 61
4,0 2.8 62
3.0 1.8 62
3.0 1.8 63
3.0 1.9 63
3.0 1.8 64
3.0 1.8 64
3.0 1.8 65
3.0 1.8 66
4.0 2.8 66
3.0 1.8 67
3.0 1.8 67
3.0 1.9 68
3.0 1.8 68
4.0 2.8 69
4.0 2.8 69
4.0 2.8 70
3.0 1.8 70
3.0 1.8 71
3.0 1.9 71
3.0 1.8 72
3.0 1.8 72
3.0 1.8 73
7.0 7.0 T4
7.0 7.0 75

See Calculation of Instruction Execution Cimes, page II-33.

GEE-600

SERIES

Division

DIV
DVF

Negate

NEG
NEGL

*When actual division does not take place, GE-635 2.5usec,

506
507

531
533

Divide Integer
Divide Fraction

Negate A
Negate Long

BOOLEAN OPERATIONS

AND

ANA
ANQ
ANAQ
ANXn

ANSA
ANSQ
ANSXn

OR

ORA
ORQ
ORAQ
ORXn

ORSA
ORSQ
ORSXn

375
376
371
36n

355
356
34n

2175
276
277
26n

255
256
24n

AND to A
AND to Q
AND to AQ
AND to Xn

AND to Storage A
AND to Storage Q
AND to Storage Xn

OR to A
OR to Q
OR to AQ
OR to Xn

OR to Storage A
OR to Storage Q
OR to Storage Xn

EXCLUSIVE OR

ERA
ERQ
ERAQ
ERXn

ERSA
ERSQ
ERSXn

675
676
6717
66n

655
656
64n

EXCLUSIVE OR to A
EXCLUSIVE OR to Q
EXCLUSIVE OR to AQ
EXCLUSIVE OR to Xn

EXCLUSIVE OR to Storage A
EXCLUSIVE OR to Storage Q
EXCLUSIVE OR to Storage Xn

GE-625 GE-635

Timing Timing Reference

(nsec)? (usec) / (Page)

14, 5% 14, 2% 11-76
14, 5% 14. 2% 7

2.0 1.3 78
2.0 1.3 78
GE-625 2.8usec.
3.0 1.8 79
3.0 1.8 79
3.0 1.9 79
3.0 1.8 80
4.0 2.8 80
4.0 2.8 80
4.0 2.8 81
3.0 1.8 81
3.0 1.8 81
3.0 1.9 82
3.0 1.8 82
4.0 2.8 82
4.0 2.8 83
4.0 2.8 83
3.0 1.8 83
3.0 1.8 84
3.0 1.9 84
3.0 1.8 84
3.0 .8 85
3.0 2.8 85
3.0 2.8 85

/See Calculation of Instruction Execution Times, page II-33.

GE-600 SERIES

GE-625 GE-635

Timing Timing Reference
COMPARISON (usec)# (usec)” (Page)
Compare
CMPA 115 Compare with A 3.0 1.8 II-86
CMPQ 116 Compare with Q 3.0 1.8 87
CMPAQ 117 Compare with AQ 3.0 1.9 88
CMPXn 10n Compare with Xn 3.0 1.8 89
CwWL 111 Compare with Limits 3.0 2.2 90
CMG 405 Compare Magnitude 3.0 1.8 91
SZN 234 Set Zero and Negative Indicators from Memory 3.0 1.8 91
CMK 211 Compare Masked 3.0 2.2 92
Comparative AND
CANA 315 Comparative AND with A 3.0 1.8 93
CANQ 316 Comparative AND with Q 3.0 1.8 93
CANAQ 317 Comparative AND with AQ 3.0 1.9 93
CANXn 30n Comparative AND with Xn 3.0 1.8 94
Comparative NOT
CNAA 215 Comparative NOT with A 3.0 1.8 94
CNAQ 216 Comparative NOT with Q 3.0 1.8 94
CNAAQ 217 Comparative NOT with AQ 3.0 1.9 95
CNAXn 20n Comparative NOT with Xn 3.0 1.8 95
FLOATING POINT
Load
FLD 431 Floating Load 3.0 1.8 96
DFLD 433 Double-Precision Floating Load 3.0 1.9 96
LDE 411 Load Exponent Register 3.0 1.8 96
Store
FST 455 Floating Store 3.5 2.5 97
DFST 457 Double-Precision Floating Store 4.0 3.0 97
STE 456 Store Exponent Register 3.5 2.5 97
Addition
FAD 475 Floating Add 3.0 2.7 98
UFA 435 Unnormalized Floating Add 3.0 2.5 98

/See Calculation of Instruction Execution Times, page II-33.

BE-B00 SERIES

GE-625 GE-635
Timing Timing Referen

Addition (continued) (pusec)? (usec)” (Page)
DFAD 477 Double-Precision Floating Add 3.0 2.7 m-99
DUFA 437 Double-Precision Unnormalized Floating Add 3.0 2.5 99
ADE 415 Add to Exponent Register 3.0 1.8 100
Subtraction

FSB 575 Floating Subtract 3.0 2.7 100
UFS 535 Unnormalized Floating Subtract 3.0 2.5 101
DFSB 577 Double-Precision Floating Subtract 3.0 2.7 101
DUFS 537 Double-Precision Unnormalized Floating Subtract 3.0 2.5 102
Multiplication

FMP 461 Floating Multiply 6.0 5.9 102
UFM 421 Unnormalized Floating Multiply 6.0 5.7 103
DFMP 463 Double-Precision Floating Multiply 12.0 11.7 103
DUFM 423 Double-Prec. Unnormal. Float. Multiply 12.0 11.5 104
Division

FDV 5656 Floating Divide 14.5* 14, 2% 105
FDI 525 Floating Divide Inverted 14.5* 14, 2* 106
DFDV 567 Double-Precision Floating Divide 23.5% 23. 2% 107
DFDI 527 Double-Prec. Float, Divide Inverted 23.5% 23. 2% 108
Negate, Normalize

FNEG 513 Floating Negate 3.0 2.3 109
FNO 573 Floating Normalize 3.0 2.3 109
Compare

FCMP 515 Floating Compare 3.0 2.1 110
FCMG 425 Floating Compare Magnitude 3.0 2.1 111
DFCMP 517 Double-Precision Floating Compare 3.0 2.1 112
DFCMG 427 Double-Prec. Float. Compare Magnitude 3.0 2.1 113
FSZN 430 Floating Set Zero and Negative Indicators from Memory 3.0 1.8 114

/See Calculation of Instruction Execution Times, page II-33.

* When actual division does not take place, GE-635 2.5usec, GE-625 2.8usec.

GEE-600 SERIES

TRANSFER OF CONTROL

Transfer

TRA 710
TSXn T0n
TSS 715
RET 630

Transfer Unconditionally
Transfer and Set Xn
Transfer and Set Slave Mode
Return

Conditional Transfer

TZE
TNZ

T™I
TPL

TRC
TNC

TOV
TEO
TEU

TTF

600
601

604
605

603
602

617
614
615

607

Transfer on Zero
Transfer on Not Zero

Transfer on Minus
Transfer on Plus

Transfer on Carry
Transfer on No Carry

Transfer on Overflow
Transfer on Exponent Overflow
Transfer on Exponent Underflow

Transfer on Tally-Runout Indicator OFF

MISCELLANEOUS OPERATIONS

NOP

DIS

BCD
GTB

XEC
XED
MME
DRL

RPT
RPD
RPL

011
616

505
114

716
717
001
022

520
560
500

No Operation
Delay Until Interrupt Signal

Binary to Binary-Coded-Decimal
Gray to Binary

Execute

Execute Double
Master Mode Entry
Derail

Repeat
Repeat Double
Repeat Link

GE-625
Timing

(usec)#

09 0o 1

DY DN

[o el] o o

S
[l o]

OO OO

7 See Calculation of Instruction Execution Times, page II-33.

GE-600 SERIES

GE-635

Timing Reference

(usec) # (Page)
1.7 1I-115
1.8 115
1.7 115
3.3 116
1.7 117
1.7 117
1.7 117
1.7 117
1.7 118
1.7 118
1.7 118
1.7 119
1.7 119
1.7 119
1.1 120
1.7 120
3.4 120
8.5 121
1.7 122
1.7 122
2.3 123
2.3 124
1.3 125
1.3 127
1.3 129

MASTER MODE OPERATIONS

Master Mode

LBAR 230 Load Base Address Register
LDT 637 Load Timer Register

SMIC 451 Set Memory Controller Interrupt Cells

Master Mode and Control Processor

RMCM 233 Read Memory Controller Mask Registers
RMFP 633 Read Memory File Protect Register

SMCM 553 Set Memory Controller Mask Registers
SMFP 453 Set Memory File Protect Register

C10C 015 Connect I/0O Channel

GE-625 GE-635

Timing Timing Reference

(iLsec)? (usec)? (Page)
3.0 1.8 Im-132
3.0 1.8 132
3.0 1.8 132
3.0 1.9 133
3.0 1.9 134
3.0 1.8 135
3.0 1.8 136
3.0 1.8 137

#See Calculation of Instruction Execution Times, page I1-33.

GE-600 SERIES

Mnemonic:

ADA
ADAQ
ADE
ADL
ADLA
ADLAQ
ADLQ
ADLXn
ADQ
ADXn
ALR
ALS
ANA
ANAQ
ANQ
ANSA
ANSQ
ANSXn
ANXn
AOS
ARL
ARS
ASA
ASQ
ASXn
AWCA
AWCQ

BCD

CANA
CANAQ
CANQ
CANXn
CIOC
CMG
CMK
CMPA
CMPAQ
CMPQ
CMPXn
CNAA
CNAAQ
CNAQ
CNAXn
CWL

GE-BO0 SERIES

Page:

I1-59

60
100
66
62
63
63
64
59
60
57
55
79
79
79
80
80
81
80
66
56
54
61
61
62
64
65

120

APPENDIX B. GE-625/635 MNEMONICS
IN ALPHABETICAL ORDER WITH PAGE REFERENCES

Mnemonic:

DFAD
DFCMG
DFCMP
DFDI
DFDV
DFLD
DFMP
DFSB
DFST
DIS
DIV
DRL
DUFA
DUFM
DUFS
DVF

EAA
EAQ
EAXn
ERA
ERAQ
ERQ
ERSA
ERSQ
ERSXn
ERXn

FAD
FCMG
FCMP
FDI
FDV
FLD
FMP
FNEG
FNO
FSB
FST
FSZN

GTB

LBAR
LCA
LCAQ
LCQ

Page:

11-99
113
112
108
107
96
103
101
97
120
76
124
99
104
102
7

43
44
44
83
84
84
85
85
85
84

98
111
110
106
105

96
102
109
109
100

97
114

121
132

42
42

Mnemonic:

LCXn
LDA
LDAQ
LDE
LDI
LDT
LDQ
LDXn
LLR
LLS
LREG
LRL
LRS
MME
MPF
MPY

NEG
NEGL
NOP

ORA
ORAQ
ORQ
ORSA
ORSQ
ORSXn
ORXn

QLR
QLS
QRL
QRS

RET
RMCM
RMFP
RPD
RPL
RPT

SBA
SBAQ
SBAR
SBLA
SBLAQ
SBLQ
SBLXn

Page:

I1-43
39
39
96
45

132
39
40
58
56
40
97
54

123
75
74

78
78
120

81
82
81
82
83
83
82

57
55
56
54

116
133
134
127
129
125

67
68
52
70
71
71
72

Mnemonic:

SBQ
SBXn
SMCM
SMFP
SMIC
SREG
SSA
SSQ
SSXn
STA
STAQ
STBA
STBQ
STC1
STC2
STCA
STCQ
STE
STI
STQ
STT
STXn
STZ
SWCA
SWCQ
SZN

TEO
TEU
TMI
TNC
TNZ
TOV
TPL
TRA
TRC
TSS
TSXn
TTF
TZE

UFA
UFM
UFS

XEC
XED

Page:

II-67
68
135
136
132
47
69
69
70
46
46
49
50
53
53
47
48
97
51
46
52
46
52
72
73
91

119
119
117
118
117
118
117
115
118
115
115
119
117

98
103
101

122
122

APPENDIX C. GE-625/635 INSTRUCTION MNEMONICS
CORRELATED WITH THEIR OPERATION CODES

N
GE-625/635 Mnemonics and Operation Codes GENERAL @ ELECTRIC
COMPUTER DEPARTMENT

000 001 002 003 004 005 006 007 010 o1t 012 013 014 015 016 017
000 MME DRL NOP cnc
020 ADIXG ADLX1 ADLX2 ADLX3 ADLX4 ADLX5 ADLX6 ADLX7 ADL ADLA ADLG ,ADILAQ
040 ASX0 ASX1 ASX2 ASX3 ASX4 ASX5 ASX6 ASX7 ADS ASA ASQ
060 ADXO0 ADX1 ADX2 ADX3 ADX4 ADXS ADX6 ADX7 AWCA AWCQ LREG ADA ADGQ ADAQ
100 CMPX0 CMPX1 CMPX2 CMPX3 CMPX4 CMPX5 CMPX6 CMPX7 CWIL. CMPA CMPQ CMPAQ
120 SBLX0 SBLXi SBIX2 SBLX3 SBLX4 SBLX5 SBLX6 SBLX7 SBLA SBLQ SBLAQ
140 SSX0 SSX1 SSX2 SSX3 SSX4 SSX5 SSX6 S8X7 SSA S5
160 SBXO SBX1 SBX2 SBX3 SBX4 SBX5 SBX6 SBX7 SWCA SWCQ SBA SBQ SBAQ
200 CNAXO CNAX1 CNAX2 CNAX3 CNAX4 CNAX5 CNAX6E CNAX7 CMK CNAA CNAQ CNAAQ
220 LDXO LDX1 LDX2 LDX3 LDX4 LDX5 LDX6 LDX7 LBAR RMCM SZN LDA LDQ LDAQ
240 PRSX0 PRSX1 PRSX2Z ORSX3 ORSX4 ORSX5 ORSX6 ORSX7 BRSA ORSQ
260 ORX0 PRX1 PRX2 ORX3 ORX4 ORX5 PRX6 ORX7 ORA DRQ ORAQ
300 CANXO CANX1 CANX2 CANX3 CANX4 CANX5 CANX6 CANXT CANA CANQ CANAQ
320 LCXO LCX1 LCX2 LCX3 LCX4 LCX5 LCX6 LCX7 LCA 1CQ LCAGQ
340 ANSXO ANSX1 ANSX2 ANSX3 ANSX4 ANSX5 ANSX6 ANSXT ANSA ANSQ
360 ANXO ANX1 ANX2 ANX3 ANX4 ANX5 ANX6 ANX7 ANA ANQ ANAQ
400 MPF MPY CMG LDE ADE
420 UFM DUFM FCMG DFCMG FSZN FLD DFLD UFA DUFA
440 STZ SMIC SMFP STT FST STE DFST
460 FMP DFMP FAD DFAD
500 RPL BCD pIv DVF FNEG FCMP DFCMP
520 RPT FDI DFDI NEG NEGL UFS DUFS
540 SBAR STBA STHQ SMCM STCI
560 RPD FDV DFDV FND FSB DFSH
600 TZE TNZ TNC TRC TMI TPL TTF TEO THEU DIS ™V
620 FAX0 EAX1 EAX2 EAX3 EAX4 EAX5 FEAX6 EAX7 RET RMFP LDl EAA EAQ LT
640 KRSX0 ERSX! ERSX2 FERSX3 ERSX4 ERSX5 ERSX6 ERSXT ERSA ERSQ
660 LKRXO ERX1 ERX2 ERX3 ERX4 ERX5 ERX6 ERX7 ERA ERQ ERAQ
700 TSXO0 TSX1 TSX2 TSX3 TSX4 TSX5 TSX6 TSX7 TRA TSS XED
720 ARS QRS LRS ALS LIS
740 STX0 STX1 STX2 STX3 STX4 STX5 STX6 STX7 STCZ STCA STCQ SHEG STI STA STAQ
760 ARI. QRL. IRL. GTB ALR LLR

000 001 002 003 004 005 006 007 010 o1t 012 013 014 015 016 017

GlE-600 SERIES

APPENDIX D. PSEUDO-OPERATIONS
BY FUNCTIONAL CLASS WITH PAGE REFERENCES

PSEUDO-OPERATIONS

PSEUDO-OPERATION PAGE
MNEMONIC FUNCTIONS

CONTROL PSEUDO-OPERATIONS

DETAIL ON/OFF (Detail output listing) I11-28
LIST ON/QOFF (Control output listing 29
PCC ON/OFF (Print control cards) 29
INHIB ON/OFF (Inhibit interrupts) 30
PMC ON/OFF (Print MACRO expansion) 30
REF ON/OFF (References) 30
PUNCH ON/OFF {Control card output) 31
EDITP (Edit Print Lines) 31
EJECT (Restore output listing) 32
REM (Remarks) 32
* (* in column one -- remarks) 32
LBL (Label) 33
TTL (Title) 33
TTLS (Subtitle) 34
ABS (Output absolute text) 34
FUL (Output full binary text) 35
TCD (Punch transfer card) 35
HEAD (Heading) 35
DCARD (Punch BCD Card) 317
END (End of assembly) 38
OPD (Operation definition) 38
OPSYN {Operation synonym) 40

LOCATION COUNTER PSEUDO-OPERATIONS

USE (Use multiple location counters) 41
BEGIN (Origin of a location counter) 41
ORG (Origin set by programmer) 42
LOC (Location of output text) 42

SYMBOL DEFINING BPSEUDO-OPERATIONS

EQU (Equal to) 43
FEQU (Equal to symbol as yet undefined) 44
BOOL (Boolean) 44
SET (Symbol redefinition) 45
MIN (Minimum) 45
MAX (Maximum) 46
SYMDEF (Symbol definition) 46
SYMREF (Symbol reference) 47
NULL (Symbol EQU*) 48
EVEN (Force Location Counter Even) 48
ODD (Force Location Counter Odd) 48
EIGHT (Force Location Counter to Multiple of 8 49

GE-BO0 SERIES

PSEUDO-OPERATIONS

PSEUDO-OPERATION PAGE
MNEMONIC FUNCTION NUMBER
DATA GENERATING PSEUDO-OPERATIONS
OoCT (Octal) 11I-49
DEC (Decimal) 50
BCI (Binary Coded Decimal Information) 52
VFD (Variable field definition) 53
DUP (Duplicate cards) 55
STORAGE ALLOCATION PSEUDO-OPERATIONS
BSS (Block started by symbol) 56
BFS (Block followed by symbol) 56
BLOCK (Block common) 57
LIT (Literal Pool Origin) 57
CONDITIONAL PSEUDO-OPERATIONS
INE (If not equal) 58
IFE (If equal) 59
IFL (If less than) 59
IFG (If greater than) 59
SPECIAL WORD FORMATS
ARG (Argument--generate zero 60
operation code computer word)
NONOP (Undefined Operation) 60
ZERO (Generate one word with two 60
specified 18-bit fields)
MAXSZ (Maximum size of assembly) 61
ADDRESS TALLY PSEUDO-OPERATIONS
TALLY (Tally--ID, DI, SC, and CI 61
variations)
TALLYB (Tally--SC and CI for 9 bit bytes) 61
TALLYD (Tally and Delta) 61
TALLYC (Tally and Continue) 61
REPEAT INSTRUCTION CODING FORMATS
RPT (Repeat) 62
RPTX (Repeat using index register zero) 62
RPD (Repeat Double) 62
RPDX (Repeat Double using index register zero) 62
RPDA (Repeat Double using first instruction only) 62
RPDB {Repeat Double using second instruction 62
only)
RPL (Repeat Link) 62
RPLX (Repeat Link using index register zero) 63

GEE-BO0 SERIES

PSEUDO-OPERATIONS

PSEUDO-OPERATION PAGE
MNEMONIC FUNCTION NUMBER

MACRO PSEUDO-OPERATIONS

MACRO (Begin MACRO prototype) 64
ENDM (End MACRO prototype) 64
CRSM ON/OFF (Create symbols) 71
ORGCSM (Origin Created Symbols) 71
IDRP (Indefinite repeat) 71
DELM (Delete a MACRO) 72
PUNM (Punch MACRO Prototypes) 73
LODM (Load MACRO Prototypes) 74

PROGRAM LINKAGE PSEUDO-OPERATIONS

CALL (Call--subroutines) 76
SAVE (Subroutine entry point) 71
RETURN (Return--from subroutines) 78
ERLK (Error Linkage--between subroutines) 79

GE-600 SERIES

APPENDIX E. MASTER MODE ENTRY

SYSTEM SYMBOLS

SYSTEM SYMBOLS AND INPUT/OUTPUT OPERATIONS

The Assembler recognizes the following group of system symbols when the programmer enters
any of them in the variable field of the Master Mode Entry (MME) machine instruction. (See
Chapter 11.) These MME instructions then serve as interfaces between the GEFLOW and GESERV
modules of the Comprehensive Operating Supervisor for special purposes (suggested in the mean-

ings in the list following).

The table below indicates the system mnemonic symbol, its meaning, and the associated decimal
value substituted in the MME address field by the Assembler.

SYMBOL MEANING DECIMAL VALUE
GEINOS Input/Output Initiation 1
GEROAD Roadblock 2
GEFADD Physical File Address Request 3
GERELS Component Release 4
GESNAP Snapshot Dunip 5
GELAPS (Elapsed) Time Request 6
GEFINI Terminal Transfer to Monitor 7
GEBORT Aborting of Programs 8
GEMORE Request for additional memory or
peripherals 9
GEFCON File Control Block Request 10
GEFILS File Switching Request 11
GESETS Set Switch Request 12
GERETS Reset Switch Request 13
GEENDC Terminate Courtesy Call 14
GERELC Relinquist Control 15
GESPEC Special Interrupt Courtesy Call Request 16
GETIME Date and Time-of-Day Request 17
GECALL System Loader 18
GESAVE Write File in System Format 19
GERSTR Read File in System Format 20
GEMREL Release Memory 21
GESYOT Write on SYSOUT 22
GECHEK Checx Point 23
GEROUT Output to Remote Terminal 24
GEROLL Reinitiate or Rollback Program 25

GE-600 SERIES

INPUT/OUTPUT COMMAND FORMATS

The following listing of input/output commands are for use when coding directly to Input/Output
Supervisor within the Comprehensive Operating Supervisor.

Designators used in the listing below are:

XXXX = 0000 for Slave Mode programs
XXXX = physical device code for Master Mode programs
DA = Device Address (Used only in Master Mode
programs; see input/output select sequence
coding, Operating Supervisor reference manual.)
CA = Channel Address (Used only in Master Mode
programs; sece input/output select sequence
coding, Operating Supervisor reference manual.)
NN = number of records (01-63)
= 01 when subfield for NN is blank
CC = octal character to be used as file mark

COMMAND PSEUDO- VARIABLE OCTAL
DESCRIPTION OPERATION FIELD REPRESENTATION
Request Status REQS DA, CA 40 XXXX 020001
Reset Status RESS DA, CA 00 XXXX 020001
Read Card Binary RCB DA, CA 01 XXXX 000000
Read Card Decimal RCD DA, CA 02 XXXX 000000
Read Card Mixed RCM DA, CA 03 XXXX 000000
Write Card Binary WCB DA, CA 11 XXXX 040014
Write Card Decimal WCD DA, CA 12 XXXX 040014
Write Card Decimal Edited WCDE DA, CA 13 XXXX 040014
Write Printer WPR DA, CA 10 XXXX 000000
Write Printer Edited WPRE DA, CA 30 XXXX 000000
Read Tape Binary RTB DA, CA 05 XXXX 000000
Read Tape Decimal RTD DA, CA 04 XXXX 000000
Write Tape Binary WTB DA, CA 15 XXXX 000000
Write Tape Decimal WTD DA, CA 14 XXXX 000000
Write End-of-File WEF DA, CA 14 XXXX 101700
Write File Mark WFM CC, DA, CA 15 XXXX 10CC00
Write File Mark Decimal WFMD CC, DA, CA 14 XXXX 10CC00
Erase ERASE DA, CA 54 XXXX 020001
Backspace Record (s) BSR N, DA, CA 46 XXXX 0200NN
Backspace File BSF DA, CA 47 XXXX 020001
Forward Space Record (s) FSR N, DA, CA 44 XXXX 0200NN
Forward Space File FSF DA, CA 45 XXXX 020001
Rewind REW DA, CA 70 XXXX 020001

GE-B00 SERIES

COMMAND PSEUDO- VARIABLE OCTAL
DESCRIPTION OPERATION FIELD REPRESENTATION
Rewind and Standby REWS DA, CA 72 XXXX 020001
Set Low Density SLD DA, CA 61 XXXX 020001
Set High Density SHD DA, CA 60 XXXX 020001
Seek Disc Address SDIA DA, CA 34 XXXX 000002
Read Disc Continuous RDIC DA, CA 25 XXXX 002400
Write Disc Continuous WDIC DA, CA 31 XXXX 002400
Write Disc Continuous and Verify WDICV DA, CA 33 XXXX 002400
Select Drum Address SDRA DA, CA 34 XXXX 000002
Read Drum RDR DA, CA 25 XXXX 000000
Write Drum WDR DA, CA 31 XXXX 000000
Write Drum and Verify WDRV DA, CA 33 XXXX 000000
Drum Compare and Verify DRCV DA, CA 11 XXXX 000000
Read Perforated Tape RDPT DA, CA 02 XXXX 000000
Write Perforated Tape WPT DA, CA 11 XXXX 000000
Write Perforated Tape Edited WPTE DA, CA 31 XXXX 000000
Write Perforated Tape--Single WPTSC DA, CA 16 XXXX 000000

Character
Write Perforated Tape--Double WPTDC DA, CA 13 XXXX 000000
Character
Read Typewriter RTYP DA, CA 03 XXXX 000000
Write Typewriter WTYP DA, CA 13 XXXX 000000
Read DATANET-30 RDN DA, CA 01 XXXX 000000
Write DATANET-30 WDN DA, CA 10 XXXX 000000

GE-600 SERIES

DATA CONTROL WORD FORMATS

The Data Control Word format listing below contains designators as follows:

A = address of the data block
C = word count of data to be transferred per block
XXXX = ignored by the Assembler

PSEUDO- VARIABLE OCTAL
DESCRIPTION OPERATION FIELD REPRESENTATION
Transmit and Disconnect 10TD A C AAAAAA0Q00CCCC
Transmit and Proceed 10TP A, C AAAAAAQICCCC
Non-Transmit and Proceed IONTP A, C AAAAAAQ3CCCC
Transfer to Data Control Word TDCW A AAAAAAQ2XXXX

GE-600 SERIES

E-4

I R R R R R R ———
APPENDIX F. GE-625/635 STANDARD CHARACTER SET
GE-625/635 STANDARD CHARACTER SET
Standard GE~Internal Hollerith Standard GE-Internal Hollerith
Character Machine Octal Card Character Machine Octal Card
Set Code Code Code Set Code Code Code
0 00 0000 00 0 A 10 0000 40 11-0
1 00 0001 01 1 J 10 0001 41 11-1
2 00 0010 02 2 K 10 0010 42 11-2
3 00 0011 03 3 L 10 0011 43 11-3
4 00 0100 04 4 M 10 0100 44 11-4
5 00 0101 05 5 N 10 0101 45 11-5
6 00 0110 06 6 0 10 0110 46 11-6
7 00 0111 07 7 P 10 0111 47 11-7
8 00 1000 10 8 Q 10 1000 50 11-8
9 00 1001 11 9 R 10 1001 51 11-9
[00 1010 12 2-8 - 10 1010 52 11
i# 00 1011 13 3=8 $ 10 1011 53 11-3-8
@ 00 1100 14 4=-8 * 10 1100 54 11-4-8
"o 00 1101 15 5-8) 10 1101 55 11-5-8
~> 00 1110 16 6-8 H 10 1110 56 11-6-8
? 00 1111 17 7=-8 ! 10 1111 57 11-7-8
5 01l 0000 20 (blank) + 11 0000 60 12-0
A 01 0001 21 12-1 / 11 0001 61 0-1
B 01 0010 22 12~-2 S 11 0010 62 0-2
C 01 0011 23 12-3 T 11 0011 63 0-3
D 01 0100 24 12-4 U 11 0100 64 0=-4
E 01 0101 25 12=-5 v 11 0101 65 0~5
F 01 0110 26 12-6 W 11 0110 66 0-6
G 01 0111 27 12=7 X 11 0111 67 0-7
H 01 1000 30 12-8 Y 11 1000 70 0-8
1 01 1001 ‘31 12-9 Z 11 1001 71 0-9
& 01l 1010 32 12 - 11 1010 72 0-2-8
. 01 1011 33 12-3-8 s 11 1011 73 0-3-8
] 01l 1100 34 12-4-8 % 11 1100 74 0-4-8
(01 1101 35 12-5-8 = 11 1101 75 0-5-8
< 01 1110 36 12-6-8 " 11 1110 76 0-6-8
\ 01 1111 37 12-7-8 H 11 1111 77 0-7-8

GE-BO0 SERIES

APPENDIX G, CONVERSION TABLE
OF OCTAL-DECIMAL INTEGERS AND FRAGLLONS

Octal 10000 20000 30000 40000 50000 60000 70000

Decimal 4096 8192 12288 16384 20480 24576 28672

Octal 100000 200000 300000 400000 500000 600000 700000 1000000

Decimal 32768 65536 98304 131072 163840 196608 229376 262144

Octall 0 1 2 3 4 5 6 7 Octall 0 1 2 3 4 5 6 7

0000{ 0000 0001 0002 0003 0004 0005 0006 0007 1000| 0512 0513 0514 0515 0516 0517 0518 0519
0010 0008 0009 0010 0011 0012 0013 0014 0015 1010| 0520 0521 0522 0523 0524 0525 0526 0527
002010016 0017 0018 0019 0020 0021 0022 0023 1020] 0528 0529 0530 0531 0532 0533 0534 0535
0030 0024 0025 0026 0027 0028 0029 0030 0031 10301 0536 0537 0538 0539 0540 0541 0542 0543
00401 0032 0033 0034 0035 0036 0037 0038 0039 1040| 0544 0545 0546 0547 0548 0549 0550 0551
0050 0040 0041 0042 0043 0044 0045 0046 0047 1050 0552 0553 0554 0555 0556 0557 0558 0554
00600048 0049 0050 0051 0052 0053 0054 0055 1060|0560 0561 0562 0563 0564 0565 0566 0567
00700056 0057 0058 0059 0060 0061 0062 0063 1070|0568 0569 0570 0571 0572 0573 0574 0575
0100|0064 0065 0066 0067 0068 0069 0070 0071 1100{ 0576 0577 0578 0579 0580 0581 0582 0583
0110|0072 0073 0074 0075 0076 0077 0078 0079 111070584 0585 0586 0587 0588 0583 0590 0591
0120|0080 0081 0082 0083 0084 0085 0086 0087 1120|0592 0593 0594 0595 0596 0597 0598 0599
0130|0088 0089 0030 0091 0092 0093 0094 0095 1130|0600 0601 0602 0603 0604 0605 0606 0607
01400096 0097 0098 0099 0100 0101 0102 0103 1140|0608 0609 0610 0611 0612 0613 0614 0615
0150|0104 0105 0106 0107 0108 0109 0110 0111 1150 (0616 0617 0618 0619 0620 0621 0622 0623
0160|0112 0113 0114 0115 0116 0117 0118 0119 1160|0624 0625 0626 0627 0628 0629 0630 0631
0170[0120 0121 0122 0123 0124 0125 0126 0127 117010632 0633 0634 0635 0636 0637 0638 0639
02006128 0129 0130 0131 0132 0133 0134 0135 12000640 0641 0642 0643 0644 0645 0646 0647
0210]0136 0137 0138 0139 0140 0141 0142 0143 121010648 0149 0650 0651 0652 0653 0654 0655
022010144 0145 0146 0147 0148 0149 0150 0151 12200656 0657 0658 0653 0660 0661 0C62 NG63
0230|0152 0153 0154 0155 0156 0157 0158 0159 1230|0664 0665 0666 0667 0668 0669 0670 0671
02400160 0161 0162 0163 0164 0165 0166 0167 12400672 0673 0674 0675 0676 0677 0678 0679
0250 (0168 0169 0170 0171 0172 0173 0174 0175 1250 {0680 0681 0682 0683 0684 0685 0686 0687
02600176 0177 0178 0179 0180 0181 0182 0183 1260|0688 0689 0690 0691 0692 0693 0694 0695
02700184 0185 0186 0187 0188 0189 0190 0191 12700696 0697 0698 06399 0700 0701 0702 0703
03000192 0193 0194 0195 0196 0197 0198 0199 130010704 0705 0706 0707 0708 0709 0710 0711
0310]0200 0201 0202 0203 0204 0205 0206 0207 131010712 0713 0714 0715 0716 0717 0718 0719
03200208 0209 0210 0211 0212 0213 0214 0215 1320|0720 0721 0722 0723 0724 0725 0726 0727
03300216 0217 0218 0219 0220 0221 0222 0223 13300728 0729 0730 0731 0732 0733 0734 0735
03400224 0225 0226 0227 0228 0229 0230 0231 1340 {0736 0737 0738 0739 0740 0741 0742 0743
03500232 0233 0234 0235 0236 0237 0238 0239 1350 | 0744 0745 0746 0747 0748 0749 0750 0751
0360|0240 0241 0242 0243 0244 0245 0246 0247 1360|0752 Q0753 0754 0755 0756 0757 0758 0759
03700248 0249 0250 0251 0252 0253 0254 0255 1370|0760 0761 0762 0763 0764 0765 0766 0767

[Decimot [0768 101023]

Octall 0 1 2 3 4 5 6 7 Octal| O 1 2 3 4 5 6 1

040002560257 0258 0259 0260 0261 0262 0263 1400|0768 0769 0770 0771 0772 0773 0774 0775
0410(0264 0265 0266 0267 0268 0269 0270 0271 1410|0776 0777 0778 0779 0780 0781 0782 0783
0420(0272 0273 0274 0275 0276 0277 0278 0279 1420 (0784 0785 0786 0787 0788 0789 0790 0791
0430 (0280 0281 0282 0283 0284 0285 0286 0287 1430 (0792 0793 0794 0795 0796 0797 0798 0799
044010288 0289 0290 0291 0292 0293 0294 0295 1440 (0800 0801 0802 0803 0804 0805 0806 0807
0450 | 0296 0297 0298 0299 0300 0301 0302 0303 1450 (0808 0809 0810 0811 0812 0813 0814 0815
0460 (0304 0305 0306 0307 0308 0309 0310 0311 1460 | 0816 0817 0818 0819 0820 0821 0822 0823
0470 (0312 0313 0314 0315 0316 0317 0318 0319 1470 (0824 0825 0826 0827 0828 0829 0830 0831
0500|0320 0321 0322 0323 0324 0325 0326 0327 1500 | 0832 0833 0834 0835 0836 0837 0838 0839
0510|0328 (329 0330 0331 0332 0333 0334 0335 1510|0840 0841 0842 0843 0844 0845 0846 0847
0520|0336 0337 0338 0335 0340 0341 0342 0343 1520|0848 0849 0850 0851 0852 0853 0854 0855
0530 (0344 0345 0346 0347 0348 0349 0350 0351 1530 | 0856 0857 0858 0853 0860 0861 0862 0863
0540|0352 0353 0354 0355 0356 0357 0358 0359 1540 | 0864 0865 0866 0867 0868 0869 0870 0871
0550 (0360 0361 0362 0363 0364 0365 0366 0367 1550|0872 0873 0874 0875 0876 0877 0878 0879
0560 (0368 0369 0370 0371 0372 0373 0374 0375 1560 | 0880 0881 0882 0883 0884 0885 0886 0837
0570]0376 0377 0378 0379 0380 0381 0382 0383 1570 | 0888 0889 0890 0891 (0892 0893 0894 0895
0600|0384 0385 0386 0387 0388 0389 0390 0391 1600 | 0896 0897 0898 0899 0300 0901 0902 0903
0610{ 0392 0393 0394 0395 0396 0397 0398 0399 1610 [0904 0905 0906 0307 0908 0909 0910 0911
0620|0400 0401 0402 0403 0404 0405 0406 0407 162010912 0913 0914 0915 0916 0917 0918 0919
0630|0408 0409 0410 0411 0412 0413 0414 0415 1630 {0920 0921 0922 0923 0924 0925 0926 0927
0640 0416 0417 0418 0419 0420 0421 0422 0423 1640 (0928 0929 0930 0931 0932 0933 0934 0935
0650|0424 0425 0426 0427 0428 0429 0430 0431 1650 10936 0937 0938 0939 0940 0941 0942 0943
0660|0432 0433 0434 0435 0436 0437 0438 0439 1660 {0944 0945 0946 0947 0948 0949 0950 0951
0670|0440 0441 0442 0443 0444 0445 0446 0447 1670 | 0952 0953 0954 0955 0956 0957 0958 0959
0700 0448 0449 0450 0451 0452 0453 0454 0455 1700 {0960 0961 (0962 0963 0964 0965 0966 0967
0710|0456 0457 0458 0459 0460 0461 0462 0463 1710|0968 0969 0970 0971 0972 0973 0974 0975
0720|0464 0465 0466 0467 0468 0469 0470 0471 1720 (0976 0977 (0978 0979 0980 0981 0982 0983
073010472 0473 0474 0475 0476 0477 0478 0479 173010984 0985 0986 0987 0988 0989 0990 0991
0740|0480 0481 0482 0483 0484 0485 0486 0487 1740 0992 0993 0994 0995 0996 0997 0998 0999
07501 0488 0489 0490 0491 0492 0493 0494 0495 1750 {1000 1001 1002 1003 1004 1005 1006 1007
0760 0496 0497 0498 0499 0500 0501 0502 0503 1760|1008 1009 1010 1011 1012 1013 1014 1015
0770 0504 0505 0506 0507 0508 0509 0510 0511 1770|1016 1017 1018 1019 1020 1021 1022 1023

GE-600 SERIES

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.)

GE-600 SERIES

Octal 10000 20000 30000 40000 50000 60000 70000
Dec imal 4096 8192 12288 16384 20480 24576 28672
Octal 100000 200000 300000 400000 500000 600000 700000 1000000
Decimal 32768 65536 98304 131072 163840 196608 229376 262144

Octal] 0 1 2 3 4 5 6 1 octal| 0 1 2 3 4 5 6 71

2000|1024 1025 1026 1027 1028 1029 1030 1031 3000 1536 1537 1538 1539 1540 1541 1542 1543
2010 {1032 1033 1034 1035 1036 1037 1038 1039 3010 {1544 1545 1546 1547 1548 1549 1550 1551
2020 {1040 1041 1042 1043 1044 1045 1046 1047 3020|1552 1553 1554 1555 1556 1557 1558 1559
2030 (1048 1049 1050 1051 1052 1053 1054 1055 3030|1560 1561 1562 1563 1564 1565 1566 1567
2040 [1056 1057 1058 1059 1060 1061 1062 1063 3040|1568 1569 1570 1571 1572 1573 1574 1575
2050 (1064 1065 1066 1067 1068 1069 1070 1071 3050 [1576 1577 1578 1579 1580 1581 1582 1583
2060 [1072 1073 1074 1075 1076 1077 1078 1079 3060 [1584 1585 1586 1587 1588 1589 1590 1591
2070 (1080 1081 1082 1083 1084 1085 1086 1087 3070 | 1592 1583 1594 1595 1596 1597 1598 1599
2100 {1088 1089 1090 1091 1092 1093 1094 1095 3100 |1600 1601 1602 1603 1604 1605 1606 1607
2110 {1096 1097 1098 1099 1100 1101 1102 1103 3110 1608 1609 1610 1611 1612 1613 1614 1615
2120|1104 1105 1106 1107 1108 1109 1110 1111 3120 |1616 1617 1618 1619 1620, 1621 1622 1623
2130 [1112 1113 1114 1115 1116 1117 1118 1119 3130 1624 1625 1626 1627 1628 1629 1630 1631
2140 |1120 1121 1122 1123 1124 1125 1126 1127 3140|1632 1633 1634 1635 1636 1637 1638 1639
2150|1128 1129 1130 1131 1132 1133 1134 1135 3150 |1640 1641 1642 1643 1644 1645 1646 1647
2160 1136 1137 1138 1139 1140 1141 1142 1143 3160 (1648 1649 1650 1651 1652 1653 1654 1655
2170 [1144 1145 1146 1147 1148 1149 1150 1151 3170|1656 1657 1658 1659 1660 1661 1662 1663
2200 | 1152 1153 1154 1155 1156 1157 1158 1159 3200 | 1664 1665 1666 1667 1668 1669 1670 1671
2210 (1160 1161 1162 1163 1164 1165 1166 1167 3210 {1672 1673 1674 1675 1676 1677 1678 1679
2220 1168 1169 1170 1171 1172 1173 1174 1175 3220 {1680 1681 1682 1683 1684 1685 1686 1687
2230 [1176 1177 1178 1179 1180 1181 1182 1183 3230 [1688 1689 1690 1691 1692 1693 1694 1695
2240 1184 1185 1186 1187 1188 1189 1130 1191 3240 {1696 1697 1698 1699 1700 1701 1702 1703
2250 1192 1193 1194 1195 1196 1197 1198 1199 3250 (1704 1705 1706 1707 1708 1709 1710 1711
2260 [1200 1201 1202 1203 1204 1205 1206 1207 3260 [1712 1713 1714 1715 1716 1717 1718 1719
2270|1208 1209 1210 1211 1212 1213 1214 1215 3270 {1720 1721 1722 1723 1724 1725 1726 1727
2300|1216 1217 1218 1219 1220 1221 1222 1223 3300|1728 1729 1730 1731 1732 1733 1734 1735
2310 1224 1225 1226 1227 1228 1229 1230 1231 3310|1736 1737 1738 1739 1740 1741 1742 1743
2320 |1232 1233 1234 1235 1236 1237 1238 1239 3320 1744 1745 1746 1747 1748 1749 1750 1751
2330 {1240 1241 1242 1243 1244 1245 1246 1247 3330|1752 1753 1754 1755 1756 1757 1756 1759
2340 [1248 1249 1250 1251 1252 1253 1254 1255 3340 1760 1761 1762 1763 1764 1765 1766 1767
2350 | 1256 1257 1258 1259 1260 1261 1262 1263 3350 (1768 1769 1770 1771 1772 1773 1774 1775
2360 [1264 1265 1266 1267 1268 1269 1270 1271 3360 [1776 1777 1778 1779 1780 1781 1782 1783
2370|1272 1273 1274 1275 1276 1277 1278 1279 3370 [1784 1785 1786 1787 1788 1789 1790 1791

[octal 2400 10 2777 [ocal [3400 10 3777]
[Decimal 1280 10 1535 [Decimal | 1792 1o 2047

Oatl 0 1 2 3 4 5 6 71 Oall 0 1 2 3 4 5 6 1

2400|1280 1281 1282 1283 1284 1285 1286 1287 3400 [1792 1793 1794 1795 1796 1797 1798 1799
2410 (1288 1289 1290 1291 1292 1293 1294 1295 34101800 1801 1802 1803 1804 1805 1806 1807
2420|1296 1297 1298 1299 1300 1301 1302 1303 3420|1808 1809 1810 1811 1812 1813 1814 1815
2430 (1304 1305 1306 1307 1308 1309 1310 1311 3430 (1816 1817 1818 1819 1820 1821 1822 1823
2440 (1312 1313 1314 1315 1316 1317 1318 1319 3440 {1824 1825 1826 1827 1828 1829 1830 1831
2450 (1320 1321 1322 1323 1324 1325 1326 1327 3450 {1832 1833 1834 1835 1836 1837 1838 1839
246 1328 1329 1330 1331 1332 1333 1334 1335 3460 {1840 1841 1842 1843 1844 1845 1846 1847
2470 (1336 1337 1338 1339 1340 1341 1342 1343 347011848 1849 1850 1851 1852 1853 1854 1855
2500|1344 1345 1346 1347 1348 1349 1350 1351 3500 [1856 1857 1858 1859 1860 1861 1862 1863
25101352 1353 1354 1355 1356 1357 1358 1359 3510 1864 1865 1866 1867 1868 1869 1870 1871
2520 (1360 1361 1362 1363 1364 1365 1366 1367 3520 (1872 1873 1874 1875 1876 1877 1878 1879
2530|1368 1369 1370 1371 1372 1373 1374 1375 3530|1880 1881 1882 1883 1684 1885 1886 1887
2540 (1376 1377 1378 1379 1380 1381 1382 1383 3540 [1888 1889 1890 1891 1892 1893 1894 1895
2550 (1384 1385 1386 1387 1388 1389 1390 1391 3550 [1896 1897 1898 1899 1900 1901 1902 1903
2560 (1392 1393 1394 1395 1396 1397 1398 1399 3560 [1904 1905 1906 1907 1908 1909 1910 1911
2570|1400 1401 1402 1403 1404 1405 1406 1407 3570 [1912 1913 1914 1915 1916 1917 1918 1919
26001408 1409 1410 1411 1412 1413 1414 1415 3600 [1920 1921 1922 1923 1924 1925 1926 1927
2610{1416 1417 1418 1419 1420 1421 1422 1423 3610 [1928 1929 1930 1931 1932 1933 1934 1935
2620 |1424 1425 1426 1427 1428 1429 1430 1431 3620 |1936 1937 1938 1939 1940 1941 1942 1943
2630|1432 1433 1434 1435 1436 1437 1438 1439 3630 1944 1945 1946 1947 1948 1949 1950 1951
2640 | 1440 1441 1442 1443 1444 1445 1446 1447 3640 1952 1953 1954 1955 1956 1957 1958 1959
2650|1448 1449 1450 1451 1452 1453 1454 1455 3650 |1960 1961 1962 1963 1964 1965 1966 1967
2660 | 1456 1457 1458 1459 1460 1461 1462 1463 3660 |1968 1969 1970 1971 1972 1973 1974 1975
2670|1464 1465 1466 1467 1468 1469 1470 1471 3670 |1976 1977 1978 1979 1980 1981 1982 1983
2700|1472 1473 1474 1475 1476 1477 1478 1479 3700 [1984 1985 1986 1987 1988 1989 1990 1991
27101480 1481 1482 1483 1484 1485 1486 1487 3710 {1992 1993 1994 1995 1996 1997 1998 1999
27201488 1489 1490 1491 1492 1493 1494 1495 3720|2000 2001 2002 2003 2004 2005 2006 2007
2730|1496 1497 1488 1499 1500 1501 1502 1503 3730|2008 2009 2010 2011 2012 2013 2014 2015
27401504 1505 1506 1507 1508 1509 1510 1511 3740|2016 2017 2018 2019 2020 2021 2022 2023
2750 (1512 1513 1514 1515 1516 1517 1518 1519 3750 {2024 2025 2026 2027 2028 2029 2030 2031
2760 (1520 1521 1522 1523 1524 1525 1526 1527 3760|2032 2033 2034 2035 2036 2037 2038 2039
2770|1528 1529 1530 1531 1532 1533 1534 1535 3770 {2040 2041 2042 2043 2044 2045 2046 2047

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.)

GE-600 SERIES

Octal 10000 20000 30000 40000 50000 60000 70000
Decimal 4096 8192 12288 16384 20480 24576 28672
Octal 100000 200000 300000 400000 500000 600000 700000 1000000
Decimal 32768 65536 98304 131072 163840 196608 229376 262144
Octal| 0 1 2 3 4 5 [7 Octal| 0 1 2 3 4 5 6 i
4000 | 2048 2049 2050 2051 2052 2053 2054 2055 5000 | 2560 2561 2562 2563 2564 2565 2566 2567
4010 | 2056 2057 2058 2059 2060 2061 2062 2063 50102568 2569 2570 2571 2572 2573 2574 2575
4020|2064 2065 2066 2067 2068 2069 2070 2071 5020 2576 2577 2578 2579 2580 2581 2582 2583
40302072 2073 2074 2075 2076 2077 2078 2079 5030 | 2584 2585 2586 2587 2588 2589 2580 2591
4040 | 2080 2081 2082 2083 2084 2085 2086 2087 5040 [2592 2593 2594 2595 2596 2597 2598 2599
4050] 2088 2089 2090 2091 2092 2093 2094 2095 5050 [2600 2601 2602 2603 2604 2605 2606 2607
4060 { 2096 2097 2098 2099 2100 2101 2102 2103 5060 | 2608 2609 2610 2611 2612 2613 2614 2615
407012104 2105 2106 2107 2108 2109 2110 2111 5070 | 2616 2617 2618 2619 2620 2621 2622 2623
4100§2112 2113 2114 2115 2116 2117 2118 2119 5100 | 2624 2625 2626 2627 2628 2629 2630 2631
411012120 2121 2122 2123 2124 2125 2126 2127 5110|2632 2633 2634 2635 2636 2637 2638 2639
41202128 2129 2130 2131 2132 2133 2134 2135 5120 | 2640 2641 2642 2643 2644 2645 2646 2647
413012136 2137 2138 2139 2140 2141 2142 2143 5130 | 2648 2649 2650 2651 2652 2653 2654 2655
4140|2144 2145 2146 2147 2148 2149 2150 2151 5140 | 2656 2657 2658 2659 2660 2661 2662 2663
4150|2152 2153 2154 2155 2156 2157 2158 2159 5150 | 2664 2665 2666 2667 2668 2669 2670 2671
14160 [2160 2161 2162 2163 2164 2165 2166 2167 5160 [2672 2673 2674 2675 2676 2677 2678 2679
4170|2168 2169 2170 2171 2172 2173 2174 2175 5170|2680 2681 2682 2683 2684 2685 2686 2687
420012176 2177 2178 2179 2180 2181 2182 2183 5200 | 2688 2689 2690 2691 2692 2693 2694 2695
4210|2184 2185 2186 2187 2188 218% 2190 2191 5210|2696 2697 2698 2699 2700 2701 2702 2703
42202192 2193 2194 2195 2196 2197 2198 2199 5220|2704 2705 2706 2707 2708 2709 2710 2711
423012200 2201 2202 2203 2204 2205 2206 2207 5230 | 2712 2713 2714 2715 2716 2717 2718 2719
4240|2208 2209 2210 2211 2212 2213 2214 2215 524012720 2721 2722 2723 2724 2725 2726 2727
4250|2216 2217 2218 2219 2220 2221 2222 2223 5250 [2728 2729 2730 2731 2732 2733 2734 2735
42602224 2225 2226 2227 2228 2229 2230 2231 5260|2736 2737 2738 2739 2740 2741 2742 2743
4270|2232 2233 2234 2235 2236 2237 2238 2239 5270 12744 2745 2746 2747 2748 2749 2750 2751
43002240 2241 2242 2243 2244 2245 2246 2247 5300 | 2752 2753 2754 2755 2756 2757 2758 2759
4310|2248 2249 2250 2251 2252 2253 2254 2255 5310|2760 2761 2762 2763 2764 2765 2766 2767
432012256 2257 2258 2259 2260 2261 2262 2263 5320|2768 2769 2770 2771 2772 2773 2774 2775
4330|2264 2265 2266 2267 2268 2269 2270 2271 5330|2776 2777 2778 2779 2780 2781 2782 2783
43402272 2273 2274 2275 2276 2277 2278 2279 5340 | 2784 2785 2786 2787 2788 2789 2790 2791
4350|2280 2281 2282 2283 2284 2285 2286 2287 535012792 2793 2794 2795 2796 2797 2798 2799
4360|2288 2289 2290 2291 2292 2293 2294 2295 5360|2800 2801 2802 2803 2804 2805 2806 2807
4370|2296 2297 2298 2299 2300 2301 2302 2303 5370|2808 2809 2810 2811 2812 2813 2814 2815
[Saei [#400 10 477 (Gl 5460 15 5777]

Octal] 0 1 2 3 4 5 6 7 Octal| O 1 z 3 4 2 6 T
44002304 2305 2306 2307 2308 2309 2310 2311 54002816 2817 2820 2821 2822 2823
4410) 2312 2313 2314 2315 2316 2317 2318 2314 541012824 2825 2828 2829 2830 2831
44202320 2321 2322 2323 2324 2325 2326 2327 542012832 2833 2836 2837 2838 2830
44302328 2329 2330 2331 2332 2333 2334 2335 5430 | 2840 2841 2844 2545 2846 2847
444012336 2337 2338 233y 2340 2341 2342 2343 5440 | 2848 2849 2852 2853 2854 2855
445012344 2345 2346 2347 2348 2544 2350 2351 545012856 2857 2860 2861 2862 2863
4460|2352 2353 2354 2355 2356 2307 2358 ¢ 544012764 2865 2 2868 2B6Y 2870 2871
447012360 2361 2362 2363 2364 2365 2366 2367 547012872 2873 2874 2875 287Th 2mTT 2878 2874y
4500] 2366 2389 2370 2371 2372 2373 2374 237h 5500 2850 288 2882 5wl 2ddd 2885 2886 2BET
451042376 2377 2376 2379 2380 2381 2382 2383 5510 | 2888 288+ 2840 2r01 2HYZ 2BY3 28N 2895
45202384 2385 2386 2387 2388 238y 23u0 2391 5520 | 2896 2B8Y7T 28ur 2Huy 2400 2901 2402 2803
45302392 2393 2394 2395 2396 2347 2398 2349 5530 {2904 2905 2906 2307 2402 24905 2916 2911
4540 | 2400 2401 2402 2403 2404 2405 2406 2407 554012912 2913 291s 2515 2916 217 2918 2914
4550 | 2408 2408 2410 2411 2412 2413 2414 2415 555012920 2221 2923 2024 2925 2926 2427
4560|2416 2417 2418 2419 2420 2421 2422 2423 556012928 2924 2451 2032 2933 2934 2930
4570|2424 2425 2426 2427 2428 2429 2430 2431 557012936 2937 2939 2940 2941 2942 2943
4600|2432 2433 2434 2435 2430 2437 2438 243y 5600|2944 2945 2946 2047 2948 2949 2950 2951
46102440 2441 2442 2443 2444 2445 2446 2447 5610|2952 2953 2054 2055 2956 2957 2958 245y
40620 [2448 2449 2450 2451 2452 2403 24H4 2455 562012960 2961 2962 2963 2964 2965 2966 2067
4630 [2456 2457 2458 2459 2460 2461 2462 2463 5630|2968 2969 2970 2971 2972 2973 2974 2475
464012464 2465 2466 2467 2468 2469 2470 2471 5640 {2976 2977 2978 297y 2980 2981 2982 2983
4650|2472 2473 2474 2475 2476 2477 247% 2474 560012984 2985 2980 2487 2988 2989 2990 2991
4660|2480 2481 2482 2483 2485 2430 Tdao 4437 5660 {2992 2993 2994 2095 2846 2997 2998 2999
467012488 248Y 24490 2491 2452 24863 24ud Lasgb 5670 {3000 3001 3002 3003 3004 3005 3006 3007
4700 | 2496 2497 2498 2499 2500 2501 2502 2503 5700 (3008 3009 3010 3011 3012 3013 3014 3015
4710|2504 2505 2506 2507 2508 2509 2510 2511 5716|3016 3017 3018 3019 3020 3021 3022 3023
4720|2512 2513 2514 2515 2516 2517 2518 2519 5720|3024 3025 3026 3027 3028 3029 3030 3031
473012520 2521 2522 2523 2524 2525 2526 2527 5730|3032 3033 3034 3035 3038 3037 3038 3039
4740|2528 2529 2530 2531 2532 2533 2534 2535 5740 [3040 3041 3042 3043 3044 3045 304€ 3047
4750|2536 3537 2538 2539 2540 2541 2542 2543 5750 | 3048 3049 3050 3051 3052 3053 3054 3055
4760 | 2544 2545 2546 2547 2548 2549 2550 2551 5760|3056 3057 3058 3059 3060 3061 3062 3063
4770|2552 2553 2554 2555 2556 2557 2558 2558 5770|3064 3065 3066 3067 3068 3069 3070 3071

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.)

GE-600 SERIES

Octal 10000 20000 30000 40000 50000 60000 70000
Decimal 4096 8192 12288 16384 20480 24576 28672
Octal 100000 200000 300000 400000 500000 600000 700000 1000000
Decimal 32768 65536 98304 131072 163840 196608 229376 262144

Octal} 0 1 2 3 4 5 6 7 Octal| 0 1 2 3 4 5 [7

6000 | 3072 3073 3074 3075 3076 3077 3078 3079 7000} 3584 3585 35386 3587 3588 3589 3590 3591
6010|3080 3081 3082 3083 3084 3085 3086 3087 7010} 3592 3593 3594 3595 3596 3597 3598 3599
6020 3088 3089 3090 3091 3092 3093 3094 3095 7020|3600 3601 3602 3603 3604 3605 3606 3607
6030] 3096 3097 3098 3099 3100 3101 3102 3103 7030 | 3608 3609 3610 3611 3612 3613 3614 3615
6040|3104 3105 3106 3107 3108 3109 3110 3111 7040 [3616 3617 3618 3619 3620 3621 3622 3623
60501 3112 3113 3114 3115 3116 3117 3118 3119 7050 | 3624 3625 3626 3627 3628 3629 3630 3631
6060 | 3120 3121 3122 3123 3124 3125 3126 3127 7060|3632 3633 3634 3635 3636 3637 3638 3639
6070|3128 3129 3130 3131 3132 3133 3134 3135 7070|3640 3641 3642 3643 3644 3645 3646 3647
6100|3136 3137 3138 3139 3140 3141 3142 3143 7100|3648 3649 3650 3651 3652 3653 3654 3655
6110 3144 3145 3146 3147 3148 3149 3150 3151 7110|3656 3657 3658 3659 3660 3661 3662 3663
61203152 3153 3154 3155 3156 3157 3158 3159 7120} 3664 3665 3666 3667 3668 3669 3670 3671
6130[3160 3161 3162 3163 3164 3165 3166 3167 713013672 3673 3674 3675 367¢ 3677 3678 3679
6140|3168 3169 3170 3171 3172 3173 3174 3175 7140 | 3680 3681 3682 3683 3684 3685 3686 3687
6150] 3176 3177 3178 3179 3180 3181 3182 3183 7150|3688 3689 3690 3691 3692 3693 3694 3695
6160|3184 3185 3186 3187 3188 3189 3190 3191 7160|3696 3697 3698 3699 3700 3701 3702 3703
6170|3192 3193 3194 3195 3196 3197 3198 3199 7170|3704 37056 3706 3707 3708 3709 3710 3711
6200|3200 3201 3202 3203 3204 3205 3206 3207 7200(3712 3713 3714 3715 3716 3717 3718 3719
621013208 3209 3210 3211 3212 3213 3214 3215 7210|3720 3721 3722 3723 3724 3725 3726 3727
62203216 3217 3218 3219 3220 3221 3222 3223 7220(3728 3729 3730 3731 3732 3733 3734 3735
6230|3224 3225 3226 3227 3228 3229 3230 3231 7230 (3736 3737 3738 3739 3740 3741 3742 3743
624013232 3233 3234 3235 3236 3237 3238 3239 7240|3744 3745 3746 3747 3748 3749 3750 3751
6250 [3240 3241 3242 3243 3244 3245 3246 3247 7250|3752 3753 3754 3755 3756 3757 3758 3759
6260|3248 3249 3250 3251 3252 3253 2354 3255 7260|3760 3761 3762 3763 3764 3765 3766 3767
6270] 3256 3257 3258 3259 3260 3261 3262 3263 7270|3768 3769 3770 3771 3772 3773 3714 3775
6300|3264 3265 3266 3267 3268 3269 3270 3271 73003776 3777 3778 3779 3780 3781 3782 3783
6310|3272 3273 3274 3275 3276 3277 3278 3279 7310|3784 3785 3786 3787 3788 3789 3790 3791
6320|3280 3281 3282 3283 3284 3285 3286 3287 7320|3792 3793 3794 3795 3796 3797 3798 3799
63303288 3289 3280 3291 3292 3293 3294 3295 73303800 3801 3802 3803 3804 3805 3806 3807
6340|3296 3297 3298 3299 3300 3301 3302 3303 7340|3808 3809 3810 3811 3812 3813 3814 3815
6350|3304 3305 3306 3307 3308 3309 3310 3311 7350|3816 3817 3818 3319 3820 3821 3822 3823
636013312 3313 3314 3315 3316 3317 3318 3319 7360|3824 3825 3826 3827 3828 3829 3830 3831
63703320 3321 3322 3323 3324 3325 3326 3327 7370|3832 3833 3834 3835 3836 3837 3838 3839

[el 6400 15 6777 [Gal 7400 15 7777]
[Decimai[3328 1o 3503] [Gecimat | 3940 10" 40%5]

Octal|l 0 1 2 3 4 5 6 1 Octal| 0 1 2 3 4 5 6 T

6400|3328 3329 3330 3331 3332 3333 3334 3335 740013840 3841 3842 3843 3844 3845 3846 3847
6410|3336 3337 3338 3339 3340 3341 3342 3343 7410} 3848 3849 3850 3851 3852 3853 3854 3855
6420 | 3344 3345 3346 3347 3348 3349 3350 3351 7420 3856 3857 3858 3859 3860 3861 3862 3863
6430|3352 3353 3354 3355 3356 3357 3358 3359 7430 3864 3865 3866 3867 3868 3869 3870 3871
6440|3360 3361 3362 3363 3364 3365 3366 3367 7440 | 3872 3873 3874 3875 3876 3877 3878 3879
64503368 3369 3370 3371 3372 3373 3374 3375 7450|3880 3881 3882 3883 3884 3885 3886 3887
64603376 3377 3378 3379 3380 3381 3382 3383 7460 | 3888 3889 3890 3891 3892 3893 3894 3895
6470|3384 3385 3386 3387 3388 3389 3390 3391 7470 | 3896 3897 3898 3893 3900 3901 3902 3903
65003392 3393 3394 3395 3396 3397 3398 3399 750013904 3905 3906 3907 3908 3909 3910 3911
6510 (3400 3401 3402 3403 3404 3405 3406 3407 751013912 3913 3514 3915 3916 3917 3918 3919
65203408 3409 3410 3411 3412 3413 3414 3415 752013920 3921 3922 3923 3924 3925 3926 3927
6530|3416 3417 3418 3419 3420 3421 3422 3423 753013928 3929 3930 3931 3932 3933 3934 3935
6540|3424 3425 3426 3427 3428 3429 3430 3431 75403036 3937 3938 3939 3940 3941 3942 3943
6550 [3432 3433 3434 3435 3436 3437 3438 3439 7550|3944 3945 3946 3947 3948 3949 3950 3951
65601 3440 3441 3442 3443 3444 3445 3446 3447 7560|3952 3953 3954 3955 3956 3957 3358 3959
6570) 3448 3449 3450 3451 3452 3453 3454 3455 7570 | 3960 3961 3962 3963 3964 3965 3966 3967
6600 | 3456 3457 3458 3459 3460 3461 3462 3463 7600 | 3968 3969 3970 3971 3972 3973 3974 3975
6610|3464 3465 3466 3467 3468 3469 3470 3471 7610|3976 3977 3978 3979 3980 3981 3982 3983
6620 [3472 3473 3474 3475 3476 3477 3478 3479 7620|3984 3985 3986 3987 3988 3989 3990 3991
6630) 3480 3481 3482 3483 3484 3485 3486 3487 7630|3992 3993 3994 3995 3996 3997 3998 3999
6640 | 3488 3489 3490 3491 3452 3493 2494 3495 7640 | 4000 4001 4002 4003 4004 4005 4006 4007
6650 | 3496 3497 3498 3499 3500 3501 3502 3503 7650 [4008 4009 4010 4011 4012 4013 4014 4015
6660 | 3504 3505 3506 3507 3508 3509 3510 3511 7660|4016 4017 4018 4019 4020 4021 4022 4023
6670 {3512 3513 3514 3515 3516 3517 3518 3519 767014024 4025 4026 4027 4028 4029 4030 4031
6700|3520 3521 3522 3523 3524 3525 3526 3527 7700|4032 4033 4034 4035 4036 4037 4038 4039
6710|3528 3529 3530 3531 3532 3533 3534 3535 77104040 4041 4042 4043 4044 4045 4046 4047
6720|3536 3537 3538 3539 3540 3541 3542 3543 7720|4048 4049 4050 4051 4052 4053 4054 4055
6730) 3544 3545 3546 3547 3548 3549 3550 3551 773014056 4057 4058 4059 4060 4061 4062 4063
6740|3552 3553 3554 3555 3556 3557 3558 3559 7740|4064 4065 4066 4067 4068 4069 4070 4071
6750|3560 3561 3562 3563 3564 3565 3566 3567 7750|4072 4073 4074 4075 4076 4077 4078 4079
6760} 3568 3569 3570 3571 3572 3573 3574 3575 7760|4080 4081 4082 4083 4084 4085 4086 4087
6770(3576 3577 3578 3579 3580 3581 3582 3583 7770|4088 4089 4090 4091 4092 4093 4094 4095

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000 .000000 .100 .125000 -200 .250000 .300 .375000
.001 .001953 .101 .126953 .201 .251953 .301 .376953
.002 .003906 .102 .128806 202 .253906 .302 .378906
.003 .005859 103 .130859 .203 .255859 .303 .380859
.004 .007812 .104 .132812 .204 257812 .304 .382812
.005 .009765 .105 .134765 .205 .259765 .305 .384765
.006 .011718 .106 .136718 .206 .261718 .306 .386718
.007 .013671 107 .138671 .201 .263671 .307 .388671
.010 .015625 .110 .140625 .210 .265625 310 .390625
011 .017578 11 142578 .211 267578 2311 392578
012 019531 112 .144531 212 .269531 312 .394531
.013 .021484 113 .146484 .213 .271484 .313 .396484
.014 023437 114 .148431 .214 .273437 314 .3984317
.015 .025390 115 .150390 215 275390 315 .400390
.016 10217343 116 .152343 .216 217343 316 .402343
017 .029296 117 .154296 217 21719296 3117 .404296
.020 .031250 120 .156250 220 .281250 .320 .406250
.021 .033203 121 .158203 221 .283203 .321 .408203
.022 .035156 122 .160156 .222 .285156 322 410156
.023 .037109 123 162109 .223 .287109 .323 412109
.024 .039062 124 164062 .224 .289062 324 .414062
.025 .041015 125 .166015 .225 .291015 .325 .416015
.026 .042968 126 .167968 226 .292968 326 .417968
.027 .044921 121 .169921 227 .294921 .327 .419921
.030 .046875 130 171875 .230 296875 .330 421875
.031 .048828 .131 .173828 .231 .298828 331 .423828
.032 .050781 .132 175781 .232 .300781 .332 .425781
.033 .052734 .133 171734 .233 .302734 .333 427734
.034 .054687 134 .179687 .234 .304687 .334 429687
.035 .056640 135 .181640 .235 .306640 .335 .431640
.036 .058593 .136 .183593 .236 .308593 .336 .433593
.037 .060546 137 .185546 .237 .310546 .337 .435546
.040 .062500 .140 .187500 .240 .312500 L340 .437500
.041 .064453 .141 .189453 241 .314453 341 .439453
.042 .066406 142 .191406 242 .316406 .342 .441406
.043 .068359 .143 .193359 .243 .318359 .343 .443359
.044 .070312 144 .195312 244 .320312 .344 .445312
.045 .072265 145 .197265 .245 322265 .345 .447265
046 .074218 .146 .199218 .246 .324218 .346 .449218
.047 076171 147 201171 .247 .326171 .347 451171
.050 .078125 150 .203125 .250 .328125 .350 .453125
.051 .080078 .151 205078 251 .330078 .351 .455078
.052 .082031 .152 .207031 .252 .332031 .352 .457031
.053 .083984 153 .208984 .253 .333984 .353 .4580%4
054 .085937 154 .210937 254 335937 .354 460353
.055 .087890 155 .212890 .255 .337890 .355 4628490
.056 .089843 .156 .214843 .256 .339843 .356 .464843
057 .091796 157 216796 257 .341796 .357 466796
.060 .093750 .160 .218750 .260 .343750 .360 468750
.061 .095703 .161 220703 261 .345703 361 .470703
062 .097656 .162 222656 .262 .3477656 .362 472656
.063 .099609 163 .224609 .263 .349609 .363 .474609
.064 .101562 .164 226562 .264 .351562 .364 476562
.065 .103515 165 .228515 .265 .353515 365 478515
066 .105468 166 .230468 2 .355468 .366 .480468
067 .107421 167 232421 267 357421 367 482421
.070 109375 .170 .234375 270 .358375 .370 4843175
.07t 111328 171 .236328 2n .361328 371 .486328
.072 .113281 172 .238281 R .363231 .372 .488281
.073 .115234 173 .240234 273 .365234 373 .490234
074 117187 174 .242187 274 .367187 .374 .4921817
.075 .119140 175 .244140 275 .369140 .375 .494140
.076 .121093 .176 .246093 .276 .371093 316 .496093
077 123046 177 .248046 277 .373046 371 .498046

GlE-600 SERIES

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont.)

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751

.000006 .000022 .000106 .000267 .000206 .000511 000306 .000755

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766
.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770
.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774
.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778
.000015 000049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785
.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789
.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797
.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805
.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808
.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812
.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816
.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820
.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823
.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827
.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835
.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839
.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843
.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846
.000037 .000118 .000137 .000362 .0002317 .000606 .000337 .000850
.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854
.000041 .000125 .000141 000370 .000241 .000614 .000341 .000858
.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862
.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865
.000044 .000137 .000144 .000381 .000244 000625 .000344 .000869
.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873
.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877
.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881
.000050 000152 .000150 .000396 .000250 .000640 .000350 .000885
.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888
.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892
.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896
.000054 000167 .000154 .000411 .000254 .000656 .000354 .000900
.000055 .000171 .000155 .000415 .000255 .000659 .000355 000904
.000056 .000175 .000156 .000419 .000256 .000663 .000356 .00n907
.000057 .000179 .000157 .000423 .000257 .000667 .000357 RUVSEDDY

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915
.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919
.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923
.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926
.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930
.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934
.000066 .000205 .000166 .000450 .000266 000694 .000366 .0009338
.000067 .000209 .000167 .000453 000267 .000698 .000367 .000942
.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946
.000071 .000217 .000171 .000461 .000271 .000705 .0CC371 .000218
.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953
.000073 .000225 .000173 .000469 .000273 .000713 .000373 0009857
.000074 .000228 .000174 .000473 .000274 000717 000374 .000961

.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965
.000076 .000236 .000176 .000480 .000276 000724 .000376 .000968
.000077 .000240 .000177 .000484 .000277 000728 .000377 .000972

GE-600 SERIES

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont.)

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708
.000401 .000980 .000501 .001224 .000601 .001468 .000701 001712
.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716
.000403 .000988 .000503 .001232 .000603 .001476 .000703 001720
.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724
.000405 .000995 .000505 .001239 .000605 .001483 .000705 001728
.000406 .0009499 .000506 .001243 .000606 .001487 .000706 001731
.000407 .001003 .000507 .001247 .000607 .001491 .000707 001735
.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739
.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743
.000412 .001014 .000512 .001258 .000612 .001502 000712 .001747
.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750
.000414 001022 .000514 001266 .000614 .001510 .000714 .001754
.000415 001026 .000515 .001270 .000615 .001514 .000715 .001758
000416 .001029 .000516 001274 .000616 .001518 .000716 001762
.000417 .001033 .000517 001277 .000617 .001522 .000717 001766
.000420 001037 .000520 .001281 .000620 .001525 .000720 .601770
.000421 001041 .000521 .001285 .000621 .001529 .000721 001773
.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777
.000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781
.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785
.000425 001056 .000525 .001300 .000625 .001544 .000725 .001789
.000426 .001060 .000526 .001304 .000626 .001548 000726 .001792
.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796
.000430 .001068 .000530 001312 .000630 .001556 .000730 .001800
.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804
.000432 .001075 .000532 001319 .000632 .001564 .000732 .001808
.000433 .001079 .000533 .001323 .000633 001567 .000733 .001811
.000434 .001083 .000534 .001327 .000634 001571 .000734 001815
.000435 .001087 .000535 .001331 .000635 001575 .N00735 001819
.000436 .001091 .000536 .001335 .000636 .001579 .000736 L001823
.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827
.000440 .001098 .000540 .001342 .000640 001586 .060740 001831
.000441 .001102 .000541 .001346 .000641 001590 .000741 .001834
.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838
.000443 001110 .000543 .001354 .000643 .001598 .000743 001842
.000444 001113 .000544 .001358 .000644 .001602 .000744 .001846
000445 00117 000545 .001361 .000645 001605 .000745 .001850
.000446 001121 .000546 .001365 .000646 .001609 000746 .001853
000447 001125 .000547 .001369 .000647 001613 000747 .001857
000450 00112y .000550 .001373 .000650 .001617 00750 .001861
.000451 001132 .000551 .001377 .000651 .001621 .000751 .001865
000452 001136 0005652 .001380 .000652 001625 000752 001869
.000453 001140 .000553 .001384 .000653 .001628 000753 .001873
.000454 001144 .000554 .001388 .000654 .001632 .000754 .001876
000455 001148 .000555 .001392 .000655 .001636 .000755 .N01880
0004566 .001152 000556 001396 .000656 .001640 .000756 .001884
.000457 .001155 .000557 .001399 .000657 .001644 000757 .001888
000460 .00115Y .000560 .001403 .000660 .001647 .000760 001892
000461 001163 000561 .001407 .000661 001651 .000761 .001895
000462 001167 .000562 .001411 .000662 .001655 .000762 .001899
000463 001171 .000563 .001415 .000663 .001659 .000763 .001903
000464 001174 .000564 .001419 .000664 .001663 000764 .001907
.000465 001178 .000565 .001422 .000665 001667 000765 .001911
000466 001182 .600566 .001426 .000666 .001670 000766 .o1914
000467 001186 .000567 .001430 .000667 .001674 000767 001918
.000470 001190 .000570 .001434 .000670 .001678 000770 .001922
.000471 001194 .000571 .001438 .000671 .001682 000771 .001926
000472 001197 .000572 .001441 .000672 .001686 000772 .001930
.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934
.000474 .001205 .000574 .001449 .000674 .001693 .000774 .001937
.000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941
.000476 .001213 .000576 .001457 .000676 .001701 .0007176 .001945
.000477 001216 .000577 .001461 .000677 .001705 000771 001949

BE-600 SERIES

APPENDIX H.
AND BINARY-DECIMAL EQUIVALENTS

2
4
8

16
32
64

128
256
512

1024
2 048
4 096

8 192
16 384
32 768

65 536
131 072
262 144

524 288
1 048 576
2 097 152

4 194 304
8 388 608
16 777 216

33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1 073 741 824

2 147 483 648
4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368
68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

1 099 511 627 776

GE-GO0 SERIES

TABLES OF POWERS OF TWO

TABLE OF POWERS OF 2

ocCOo o
=N o

.25
125
0.062 5

0.031 25
0.015 625

0.007 812 5
0.003 906 25
0.001 953 125

0.000 976 562 5
0.000 488 281 25
0.000 244 140 625

0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625

0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125

0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25
0.000 000 059 604 644 775 390 625

0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.00C 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625

0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125

0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625

0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 0600 000 001 818 989 403 545 856 475 830 078 125

0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

BINARY AND DECIMAL EQUIVALENTS

Number
Mal:::q‘i?l [\)Iea(illx?al Dec::fimal NuoTber Maximum Decimal Fractional Value
Digits Bits
1 1 .5
3 2 .75
7 3 875
15 1 4 937 5
3T T T 75 T|.968 75
63 6 984 375
a7l 2 ,__7_ + 2992 1875 This chart provides the information nec-
255 8 -996 093 75 essary to determine:
511 9 998 046 875
1023 3 | 10] .999023 4375 a. The number of bits needed to
2 047 11 .999 511 718 75 represent a given decimal
4 095 12 .999 755 859 375 number. Use columns one and
8 191 13 .999 877 929 687 5 three or four and three.
163830 4 | 1a | .999938 964 843 75
32 767 15 2999 969 482 421 875 b. The number of bits needed to
65 535 . 16 .999 984 741 210 937 5 represent a given number of
as3io71f 5 17 12999 992 370 605 468 75 decimal digits (all nines).
262 143 18 999 996 185 302 734 375 Use columns two and three.
524 287 19 .999 998 092 651 367 187 5
1048 575 - .i |20 _ 1 -999 999 046 £5i83_593_7i, c. The maximum decimal value
27097 151 21 1999 999 523 162 841 796 875 represented by a given
4194 303 22 .999 999 761 581 420 898 437 5 number of bits, use columns
8 388 607 23 .999 999 880 790 710 449 218 75 one and three or three and
16777215] 7 | 24| .999 999 940 395 355 244 609 375 four.
33 554 431 25 .999 999 970 197 677 612 304 687 5
67 108 863 26 .999 999 985 098 838 806 152 343 75
134217727} 8 | 27] .999 999 992 549 419 403 076 171 875
268 435 455 28 7999 999 996 274 709 701 538 085 937 5
536 870 911 29 .999 999 998 137 354 850 769 042 968 75
Lor37a1823) 9 | 30 |.999 999 999 068 677 425 384 521 484 375_
2 147 483 647 31 .999 999 999 534 338 712 692 260 742 187 5
4 294 967 295 32 .999 999 999 767 169 356 346 130 371 093 75
8 589 934 591 33 <999 999 999 883 584 678 173 065 185 546 875
17179869 1831 10 | 34 | .999 999 999 941 792 339 086 532 592 773 437 5
34 359 738 367 35 999 999 999 970 896 169 543 266 296 386 718 75
68 719 476 735 36 <999 999 999 985 448 034 771 633 148 193 359 375
137438953 471] 10| 37 | .999 999 999 992 724 042 385 816 574 096 679 6875
274 877 906 943 38 2999 999 999 996 362 021 192 908 287 048 339 843 75
£49 755 813 887 39 +999 999 999 998 181 010 596 454 143 524 169 921 875
1099511 27 775] 12 | 40 | .999 999999 999 090 505 298 227 071 762 084 960937 5
2 199 023 255 551 4 999 999 999 999 545 252 649 113 535 881 042 480 468 75
4 398 046 511 103 42 .999 999 999 999 772 626 324 556 767 940 521 240 234 375
8 796 093 022 207 43 +999 999 999 999 886 313 162 278 383 970 260 620 117 187 5
17592 186 044 4a15] 13 | 45 | .999.999 999 999 943 156 581 139 191 985 130 310 058 593 75
35 184 372 088 831 45 +999 999 999 999 971 578 290 569 595 992 565 155 029 296 875
70 368 744 177 663 46 2999 999 999 999 985 789 145 284 797 996 282 577 514 648 437 5
140737 488 355 327) 14| 47 | .999 999 999 999 992 894 572 642 398 998 141 288 757 324 218 75
281 474 976 710 655 48

GE-600 SERIES

APPENDIX I. THE TWO'S COMPLEMENT NUMBER SYSTEM

Let us first consider a simple example of two’s complement numbers, namely integers of three
bits each, numbering the bits 0, 1, and 2, respectively, from left to right. Then the integer
“xyz” represents the decimal quantity “-4x+2y+z”:

hence 011 represents +3
010 represents +2
001 represents +1
000 represents +0
111 represents -1
110 represents -2
101 represents -3
and 100 represents -4

Thus each decimal integer from -4 to 3 hasa unique representation as a two’s complement
number. Bit 0 also serves as the sign-bit, since it is 0 for all positive numbers and 1 for all
negative numbers. Note that “000” is a positive number.

We perform the addition “abct+xyz” as though “abc” and “xyz” were signless binary integers
from 0 to 7, ignoring any carry out of bit 0 of the sum. If the true sum is not an integer from
-4 to 3, then we have an overflow. We observe that the carry out of bit 0 = the carry out of bit
1 if, and only if, there is no overflow. In the case when a + X, we cannot have an overflow, since
the sum ranges from -4 to 2. It follows that a r x =1 and that the carries must be equal, since
we have 0+1 = 1 with carry 0 and 1+1 = 0 with carry 1. In the case when a = x, we have no over-
flow if, and only if, bit 0 of the sum = x. We have this equality if, and only if, the carries are
equal, since we have 0:+0+0 = 0 with carry 0 and 1+1+1 = 1 with carry 1. We conclude that our
overflow test is a valid one. The following examples are illustrations of two’s complement
addition:

CARRIES 00 11 00 01 11 10
abe 110=-2 110=-2 010=+2 010=+2 110=-2 110=-2
XyZ 001=+1 011=+3 001=+1 011=+3 111=-1 101=-3
abect+xyz 111=-1 001=+1 011=4+3 101=-3 101=-3 011=+3
REMARKS NO OVF. NO OVF, NO OVF. OVF. NO OVF. OVF.

We say that “uvw” is the one’s complement of “xyz” (and vice versa) if uvw+xyz = 111. Hence
Uu+x = v+y = w+x = 1. We say that the quantity “uvw+001” is the two’s complement of “xyz”,
observing that its decimal value is:

~4u2viw+l = -4(1-x)+2(1-y)+(1-2)+1
~-(-4x+2y+2),

1

Oor minus the value of “xyz”. For this reason we call “xyz” a two’s complement number. We
perform the subtraction “abc-xyz” by the triple addition “abc+uvw+001” (in effect, by adding “abc”
and “uvw” with a forced carry of 1 into the low order bit 2). We use the same overflow test as
for addition. Note that 000-000 = 000 (no overflow) and that 000-100 = 100 (overflow). Hence
“000” is its own two’s complement, and “100” does not have a proper two’s complement. We
note the conspicuous absence of a -0 from the two’s complement system above. :

BE-600 SERlES — =

I-1

We may generalize the above discussion to include two’s complement integers of N bits each.
The integer "X X,X,...X, Xy, represents the decimal quantity below:

N-1 N—2 N=-3
-2 Xo+2 X1+2 Xote o o 42X, +X 4

The same rules as above hold for addition, overflow, complementation, and subtraction. In the
GE-600 hardware, we may have several choices for N:

N=8 for exponent fields,

N=18 for address fields,

N=36 for single-precision integers,
and N=72 for double-precision integers.

The use of two’s complement numbers offers many advantages:

1. It eliminates housekeeping before and after addition and subtraction in the computer
hardware.

2. It permits addition and subtraction modulo 2" since we may always consider a number
to be signless.

3. It permits addition of a quantity to a field of a word, without any need to worry about
the sign-bit. (In the sign-magnitude system, one would add the quantity if the sign
were positive, and subtract the quantity if the sign were negative.)

4. 1t makes zero a unique positive number.

5. It is compatible with index register arithmetic.
Of course, the GE-600 programmer must always be aware of the fact that the computer isa
two’s complement machine, especially when converting programs that were originally written
for a machine with sign-magnitude or one’s complement arithmetic. For example, the sign
magnitude convention of “changing sign” corresponds to the two’s complement convention of

“negation” (or “complementation”). In FORTRAN systems, the quantity -0 often indicates a
blank card field. There is no such quantity in the GE-500 system, whether in fixed or floating

point.

A two’s complement floating point number in the Floating Point Register consists of two parts:
1. An integral exponent field of eight bits.
2. A fractional mantissa field of seventy-two bits. The mantissa "X,X,x,...x,," repre-

sents the decimal quantity below:

-1 -2 -71
Xo+2 T X142 " Xa4. . .42 Xy

GE-600 SERIES

We say that a floating point number is normalized if either:
1. The exponent field is 10000000 and the mantissa field is zero, or

2. The first two mantissa bits are different: xo # X,

The value of a floating point number is mantissa *2exponent' Hence the normal form of +1 is
exponent 00000001 and mantissa 0100...0, and the normal form of -1 is exponent 00000000 and
mantissa 1000...0. If “f” is a floating point number that is not a power of two, however, then
both +f and -f have the same exponent fields in normal form, and their mantissa fields are
two’s complements of each other. For =10, the normal form of +f is exponent 00000100 and
mantissa 010100...0. The normal form of -f is exponent 00000100 and mantissa 101100...0.
Note that the first bit of the mantissa is the sign-bit of the number.

. -1 - -71 - -7
Since -Xo+2 'xo+2 ®xy+...4277 x7o:%(-xO+2 PXid, o427 K0y),

ignoring the remainder, the GE-600 hardware retains the value of bit O during each right shift
cycle prior to a floating point addition or subtraction. For the same reason, there is a numeric
right shift as well as a logical right shift for A, Q, and AQ.

The representation of mixed numbers illustrates a feature of the two’s complement number
system. Consider the case of f=1.25. Then the normal form of +f is exponent 00000001 and
mantissa 010100...0. The normal form of -f is exponent 00000001 and mantissa 101100...0.
The integral part of +f is +1, and the fractional part of +f is +.25. The integral part of -f is -2,
and the fractional part of -f is +.75. Hence the integral parts are one’s complements of each
other, and the fractional parts are two’s complements of each other. In general, this condition
holds whenever we divide a two’s complement number into a pair of disjoint fields, where the
right field is not zero. The reason for the condition is that the sign-bit of a two’s complement
number is the only bit with a negative value. The condition is desirable in some mathematical
applications where we wish to compute the greatest integer less than or equal to a given number.
However, the condition raises a compatibility problem when converting programs originally
coded on sign-magnitude or one’s complement machines. The solution to the problem is the
addition of +1 to the integral part of nonwhole negative numbers. The problem arises noticeably
in the implementation of FORTRAN built-in functions.

GE-600 SERIES

I-3

] LE (25/4 %5
/004D

	GE-635-Ref-Man_0190a.tif
	GE-635-Ref-Man_0191a.tif
	GE-635-Ref-Man_0192a.tif
	GE-635-Ref-Man_0193a.tif
	GE-635-Ref-Man_0194a.tif
	GE-635-Ref-Man_0195a.tif
	GE-635-Ref-Man_0196a.tif
	GE-635-Ref-Man_0197a.tif
	GE-635-Ref-Man_0198a.tif
	GE-635-Ref-Man_0199a.tif
	GE-635-Ref-Man_0200a.tif
	GE-635-Ref-Man_0201a.tif
	GE-635-Ref-Man_0202a.tif
	GE-635-Ref-Man_0203a.tif
	GE-635-Ref-Man_0204a.tif
	GE-635-Ref-Man_0205a.tif
	GE-635-Ref-Man_0206a.tif
	GE-635-Ref-Man_0207a.tif
	GE-635-Ref-Man_0208a.tif
	GE-635-Ref-Man_0209a.tif
	GE-635-Ref-Man_0210a.tif
	GE-635-Ref-Man_0211a.tif
	GE-635-Ref-Man_0212a.tif
	GE-635-Ref-Man_0213a.tif
	GE-635-Ref-Man_0214a.tif
	GE-635-Ref-Man_0215a.tif
	GE-635-Ref-Man_0216a.tif
	GE-635-Ref-Man_0217a.tif
	GE-635-Ref-Man_0218a.tif
	GE-635-Ref-Man_0219a.tif
	GE-635-Ref-Man_0220a.tif
	GE-635-Ref-Man_0221a.tif
	GE-635-Ref-Man_0222a.tif
	GE-635-Ref-Man_0223a.tif
	GE-635-Ref-Man_0224a.tif
	GE-635-Ref-Man_0225a.tif
	GE-635-Ref-Man_0226a.tif
	GE-635-Ref-Man_0227a.tif
	GE-635-Ref-Man_0228a.tif
	GE-635-Ref-Man_0229a.tif
	GE-635-Ref-Man_0230a.tif
	GE-635-Ref-Man_0231a.tif
	GE-635-Ref-Man_0232a.tif
	GE-635-Ref-Man_0233a.tif
	GE-635-Ref-Man_0234a.tif
	GE-635-Ref-Man_0235a.tif
	GE-635-Ref-Man_0236a.tif
	GE-635-Ref-Man_0237a.tif
	GE-635-Ref-Man_0238a.tif
	GE-635-Ref-Man_0239a.tif
	GE-635-Ref-Man_0240a.tif
	GE-635-Ref-Man_0241a.tif
	GE-635-Ref-Man_0242a.tif
	GE-635-Ref-Man_0243a.tif
	GE-635-Ref-Man_0244a.tif
	GE-635-Ref-Man_0245a.tif
	GE-635-Ref-Man_0246a.tif
	GE-635-Ref-Man_0247a.tif
	GE-635-Ref-Man_0248a.tif
	GE-635-Ref-Man_0249a.tif
	GE-635-Ref-Man_0250a.tif
	GE-635-Ref-Man_0251a.tif
	GE-635-Ref-Man_0252a.tif
	GE-635-Ref-Man_0253a.tif
	GE-635-Ref-Man_0254a.tif
	GE-635-Ref-Man_0255a.tif
	GE-635-Ref-Man_0256a.tif
	GE-635-Ref-Man_0257a.tif
	GE-635-Ref-Man_0258a.tif
	GE-635-Ref-Man_0259a.tif
	GE-635-Ref-Man_0260a.tif
	GE-635-Ref-Man_0261a.tif
	GE-635-Ref-Man_0262a.tif
	GE-635-Ref-Man_0263a.tif
	GE-635-Ref-Man_0264a.tif
	GE-635-Ref-Man_0265a.tif
	GE-635-Ref-Man_0266a.tif
	GE-635-Ref-Man_0267a.tif
	GE-635-Ref-Man_0268a.tif
	GE-635-Ref-Man_0269a.tif
	GE-635-Ref-Man_0270a.tif
	GE-635-Ref-Man_0271a.tif
	GE-635-Ref-Man_0272a.tif
	GE-635-Ref-Man_0273a.tif
	GE-635-Ref-Man_0274a.tif
	GE-635-Ref-Man_0275a.tif
	GE-635-Ref-Man_0276a.tif
	GE-635-Ref-Man_0277a.tif
	GE-635-Ref-Man_0278a.tif
	GE-635-Ref-Man_0279a.tif
	GE-635-Ref-Man_0280a.tif
	GE-635-Ref-Man_0281a.tif
	GE-635-Ref-Man_0282a.tif
	GE-635-Ref-Man_0283a.tif
	GE-635-Ref-Man_0284a.tif
	GE-635-Ref-Man_0285a.tif
	GE-635-Ref-Man_0286a.tif
	GE-635-Ref-Man_0287a.tif
	GE-635-Ref-Man_0288a.tif
	GE-635-Ref-Man_0289a.tif
	GE-635-Ref-Man_0290a.tif

